Loading…
Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability
Hybrid lead halide perovskites have emerged as promising active materials for photovoltaic cells. Although superb efficiencies have been achieved, it is widely recognized that long-term stability is a key challenge intimately determining the future development of perovskite-based photovoltaic techno...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (2), p.964-9612 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c542t-45280caeb89cb03507f1d4f05e1c49bdf1d1d71fc440e6c647e0c63e756c3e903 |
---|---|
cites | cdi_FETCH-LOGICAL-c542t-45280caeb89cb03507f1d4f05e1c49bdf1d1d71fc440e6c647e0c63e756c3e903 |
container_end_page | 9612 |
container_issue | 2 |
container_start_page | 964 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 6 |
creator | Juarez-Perez, Emilio J Ono, Luis K Maeda, Maki Jiang, Yan Hawash, Zafer Qi, Yabing |
description | Hybrid lead halide perovskites have emerged as promising active materials for photovoltaic cells. Although superb efficiencies have been achieved, it is widely recognized that long-term stability is a key challenge intimately determining the future development of perovskite-based photovoltaic technology. Herein, we present reversible and irreversible photodecomposition reactions of methylammonium lead iodide (MAPbI
3
). Simulated sunlight irradiation and temperature (40-80 °C) corresponding to solar cell working conditions lead to three degradation pathways: (1) CH
3
NH
2
+ HI (identified as the reversible path), (2) NH
3
+ CH
3
I (the irreversible or detrimental path), and (3) a reversible Pb(0) + I
2
(g) photodecomposition reaction. If only the reversible reactions
(1)
and
(3)
take place and reaction
(2)
can be avoided, encapsulated MAPbI
3
can be regenerated during the off-illumination timeframe. Therefore, to further improve operational stability in hybrid perovskite solar cells, detailed understanding of how to mitigate photodegradation and thermal degradation processes is necessary. First, encapsulation of the device is necessary not only to avoid contact of the perovskite with ambient air, but also to prevent leakage of volatile products released from the perovskite. Second, careful selection of the organic cations in the compositional formula of the perovskite is necessary to avoid irreversible reactions. Third, selective contacts must be as chemically inert as possible toward the volatile released products. Finally, hybrid halide perovskite materials are speculated to undergo a dynamic formation and decomposition process; this can gradually decrease the crystalline grain size of the perovskite with time; therefore, efforts to deposit highly crystalline perovskites with large crystal sizes may fail to increase the long-term stability of photovoltaic devices.
Strategies of how to mitigate photodegradation and thermal degradation processes are proposed in this work in order to further improve operational stability in hybrid perovskite solar cells. |
doi_str_mv | 10.1039/c8ta03501f |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8TA03501F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042367439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-45280caeb89cb03507f1d4f05e1c49bdf1d1d71fc440e6c647e0c63e756c3e903</originalsourceid><addsrcrecordid>eNpVkVFLwzAUhYsoOOZefBcCvonVpEnb9HFMp4KgD9PXkKa3Lq5tapJO9mv8q2ZOJt6X3HA-Dod7ouiU4CuCaXGtuJeYppjUB9EowSmOc1Zkh_ud8-No4tw7DsMxzopiFH09L403FSjT9sZpr02HZFchvwTbygb9V3SHWvDLTSPb1nR6aNFSNroC1ICsUA_WrN1Ke3A_HrqrwVqogonTbx3qre6U7psgexNUZUE6QP02wdo0XmoV0LVWgJyXpW6035xER7VsHEx-33H0Mr9dzO7jx6e7h9n0MVYpS3zM0oRjJaHkhSq3N8hrUrEap0AUK8oq_EiVk1oxhiFTGcsBq4xCnmaKQoHpOLrc-bpP6IdShKyttBthpBY3-nUqjH0TKzkITglnAT_f4b01HwM4L97NYLuQUCSYJTTLGS0CdbGjlDXOWaj3tgSLbWVixhfTn8rmAT7bwdapPfdXKf0GvvWYVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042367439</pqid></control><display><type>article</type><title>Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability</title><source>Royal Society of Chemistry</source><creator>Juarez-Perez, Emilio J ; Ono, Luis K ; Maeda, Maki ; Jiang, Yan ; Hawash, Zafer ; Qi, Yabing</creator><creatorcontrib>Juarez-Perez, Emilio J ; Ono, Luis K ; Maeda, Maki ; Jiang, Yan ; Hawash, Zafer ; Qi, Yabing</creatorcontrib><description>Hybrid lead halide perovskites have emerged as promising active materials for photovoltaic cells. Although superb efficiencies have been achieved, it is widely recognized that long-term stability is a key challenge intimately determining the future development of perovskite-based photovoltaic technology. Herein, we present reversible and irreversible photodecomposition reactions of methylammonium lead iodide (MAPbI
3
). Simulated sunlight irradiation and temperature (40-80 °C) corresponding to solar cell working conditions lead to three degradation pathways: (1) CH
3
NH
2
+ HI (identified as the reversible path), (2) NH
3
+ CH
3
I (the irreversible or detrimental path), and (3) a reversible Pb(0) + I
2
(g) photodecomposition reaction. If only the reversible reactions
(1)
and
(3)
take place and reaction
(2)
can be avoided, encapsulated MAPbI
3
can be regenerated during the off-illumination timeframe. Therefore, to further improve operational stability in hybrid perovskite solar cells, detailed understanding of how to mitigate photodegradation and thermal degradation processes is necessary. First, encapsulation of the device is necessary not only to avoid contact of the perovskite with ambient air, but also to prevent leakage of volatile products released from the perovskite. Second, careful selection of the organic cations in the compositional formula of the perovskite is necessary to avoid irreversible reactions. Third, selective contacts must be as chemically inert as possible toward the volatile released products. Finally, hybrid halide perovskite materials are speculated to undergo a dynamic formation and decomposition process; this can gradually decrease the crystalline grain size of the perovskite with time; therefore, efforts to deposit highly crystalline perovskites with large crystal sizes may fail to increase the long-term stability of photovoltaic devices.
Strategies of how to mitigate photodegradation and thermal degradation processes are proposed in this work in order to further improve operational stability in hybrid perovskite solar cells.</description><identifier>ISSN: 2050-7488</identifier><identifier>ISSN: 2050-7496</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta03501f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Cations ; Crystal structure ; Crystallinity ; Decomposition ; Decomposition reactions ; Encapsulation ; Fysik ; Iodides ; Irradiation ; Perovskites ; Photodecomposition ; Photodegradation ; Photovoltaic cells ; Photovoltaics ; Physics ; Radiation ; Solar cells ; Stability ; Thermal decomposition ; Thermal degradation ; Working conditions</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (2), p.964-9612</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-45280caeb89cb03507f1d4f05e1c49bdf1d1d71fc440e6c647e0c63e756c3e903</citedby><cites>FETCH-LOGICAL-c542t-45280caeb89cb03507f1d4f05e1c49bdf1d1d71fc440e6c647e0c63e756c3e903</cites><orcidid>0000-0003-3176-1876 ; 0000-0001-7665-1174 ; 0000-0001-6040-1920 ; 0000-0001-9606-3521 ; 0000-0002-4876-8049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-83184$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Juarez-Perez, Emilio J</creatorcontrib><creatorcontrib>Ono, Luis K</creatorcontrib><creatorcontrib>Maeda, Maki</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Hawash, Zafer</creatorcontrib><creatorcontrib>Qi, Yabing</creatorcontrib><title>Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Hybrid lead halide perovskites have emerged as promising active materials for photovoltaic cells. Although superb efficiencies have been achieved, it is widely recognized that long-term stability is a key challenge intimately determining the future development of perovskite-based photovoltaic technology. Herein, we present reversible and irreversible photodecomposition reactions of methylammonium lead iodide (MAPbI
3
). Simulated sunlight irradiation and temperature (40-80 °C) corresponding to solar cell working conditions lead to three degradation pathways: (1) CH
3
NH
2
+ HI (identified as the reversible path), (2) NH
3
+ CH
3
I (the irreversible or detrimental path), and (3) a reversible Pb(0) + I
2
(g) photodecomposition reaction. If only the reversible reactions
(1)
and
(3)
take place and reaction
(2)
can be avoided, encapsulated MAPbI
3
can be regenerated during the off-illumination timeframe. Therefore, to further improve operational stability in hybrid perovskite solar cells, detailed understanding of how to mitigate photodegradation and thermal degradation processes is necessary. First, encapsulation of the device is necessary not only to avoid contact of the perovskite with ambient air, but also to prevent leakage of volatile products released from the perovskite. Second, careful selection of the organic cations in the compositional formula of the perovskite is necessary to avoid irreversible reactions. Third, selective contacts must be as chemically inert as possible toward the volatile released products. Finally, hybrid halide perovskite materials are speculated to undergo a dynamic formation and decomposition process; this can gradually decrease the crystalline grain size of the perovskite with time; therefore, efforts to deposit highly crystalline perovskites with large crystal sizes may fail to increase the long-term stability of photovoltaic devices.
Strategies of how to mitigate photodegradation and thermal degradation processes are proposed in this work in order to further improve operational stability in hybrid perovskite solar cells.</description><subject>Ammonia</subject><subject>Cations</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Encapsulation</subject><subject>Fysik</subject><subject>Iodides</subject><subject>Irradiation</subject><subject>Perovskites</subject><subject>Photodecomposition</subject><subject>Photodegradation</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Physics</subject><subject>Radiation</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Thermal decomposition</subject><subject>Thermal degradation</subject><subject>Working conditions</subject><issn>2050-7488</issn><issn>2050-7496</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkVFLwzAUhYsoOOZefBcCvonVpEnb9HFMp4KgD9PXkKa3Lq5tapJO9mv8q2ZOJt6X3HA-Dod7ouiU4CuCaXGtuJeYppjUB9EowSmOc1Zkh_ud8-No4tw7DsMxzopiFH09L403FSjT9sZpr02HZFchvwTbygb9V3SHWvDLTSPb1nR6aNFSNroC1ICsUA_WrN1Ke3A_HrqrwVqogonTbx3qre6U7psgexNUZUE6QP02wdo0XmoV0LVWgJyXpW6035xER7VsHEx-33H0Mr9dzO7jx6e7h9n0MVYpS3zM0oRjJaHkhSq3N8hrUrEap0AUK8oq_EiVk1oxhiFTGcsBq4xCnmaKQoHpOLrc-bpP6IdShKyttBthpBY3-nUqjH0TKzkITglnAT_f4b01HwM4L97NYLuQUCSYJTTLGS0CdbGjlDXOWaj3tgSLbWVixhfTn8rmAT7bwdapPfdXKf0GvvWYVg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Juarez-Perez, Emilio J</creator><creator>Ono, Luis K</creator><creator>Maeda, Maki</creator><creator>Jiang, Yan</creator><creator>Hawash, Zafer</creator><creator>Qi, Yabing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>AAMOE</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG3</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-3176-1876</orcidid><orcidid>https://orcid.org/0000-0001-7665-1174</orcidid><orcidid>https://orcid.org/0000-0001-6040-1920</orcidid><orcidid>https://orcid.org/0000-0001-9606-3521</orcidid><orcidid>https://orcid.org/0000-0002-4876-8049</orcidid></search><sort><creationdate>2018</creationdate><title>Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability</title><author>Juarez-Perez, Emilio J ; Ono, Luis K ; Maeda, Maki ; Jiang, Yan ; Hawash, Zafer ; Qi, Yabing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-45280caeb89cb03507f1d4f05e1c49bdf1d1d71fc440e6c647e0c63e756c3e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ammonia</topic><topic>Cations</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Encapsulation</topic><topic>Fysik</topic><topic>Iodides</topic><topic>Irradiation</topic><topic>Perovskites</topic><topic>Photodecomposition</topic><topic>Photodegradation</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Physics</topic><topic>Radiation</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Thermal decomposition</topic><topic>Thermal degradation</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juarez-Perez, Emilio J</creatorcontrib><creatorcontrib>Ono, Luis K</creatorcontrib><creatorcontrib>Maeda, Maki</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Hawash, Zafer</creatorcontrib><creatorcontrib>Qi, Yabing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>SWEPUB Karlstads universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Karlstads universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juarez-Perez, Emilio J</au><au>Ono, Luis K</au><au>Maeda, Maki</au><au>Jiang, Yan</au><au>Hawash, Zafer</au><au>Qi, Yabing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>2</issue><spage>964</spage><epage>9612</epage><pages>964-9612</pages><issn>2050-7488</issn><issn>2050-7496</issn><eissn>2050-7496</eissn><abstract>Hybrid lead halide perovskites have emerged as promising active materials for photovoltaic cells. Although superb efficiencies have been achieved, it is widely recognized that long-term stability is a key challenge intimately determining the future development of perovskite-based photovoltaic technology. Herein, we present reversible and irreversible photodecomposition reactions of methylammonium lead iodide (MAPbI
3
). Simulated sunlight irradiation and temperature (40-80 °C) corresponding to solar cell working conditions lead to three degradation pathways: (1) CH
3
NH
2
+ HI (identified as the reversible path), (2) NH
3
+ CH
3
I (the irreversible or detrimental path), and (3) a reversible Pb(0) + I
2
(g) photodecomposition reaction. If only the reversible reactions
(1)
and
(3)
take place and reaction
(2)
can be avoided, encapsulated MAPbI
3
can be regenerated during the off-illumination timeframe. Therefore, to further improve operational stability in hybrid perovskite solar cells, detailed understanding of how to mitigate photodegradation and thermal degradation processes is necessary. First, encapsulation of the device is necessary not only to avoid contact of the perovskite with ambient air, but also to prevent leakage of volatile products released from the perovskite. Second, careful selection of the organic cations in the compositional formula of the perovskite is necessary to avoid irreversible reactions. Third, selective contacts must be as chemically inert as possible toward the volatile released products. Finally, hybrid halide perovskite materials are speculated to undergo a dynamic formation and decomposition process; this can gradually decrease the crystalline grain size of the perovskite with time; therefore, efforts to deposit highly crystalline perovskites with large crystal sizes may fail to increase the long-term stability of photovoltaic devices.
Strategies of how to mitigate photodegradation and thermal degradation processes are proposed in this work in order to further improve operational stability in hybrid perovskite solar cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta03501f</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3176-1876</orcidid><orcidid>https://orcid.org/0000-0001-7665-1174</orcidid><orcidid>https://orcid.org/0000-0001-6040-1920</orcidid><orcidid>https://orcid.org/0000-0001-9606-3521</orcidid><orcidid>https://orcid.org/0000-0002-4876-8049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (2), p.964-9612 |
issn | 2050-7488 2050-7496 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C8TA03501F |
source | Royal Society of Chemistry |
subjects | Ammonia Cations Crystal structure Crystallinity Decomposition Decomposition reactions Encapsulation Fysik Iodides Irradiation Perovskites Photodecomposition Photodegradation Photovoltaic cells Photovoltaics Physics Radiation Solar cells Stability Thermal decomposition Thermal degradation Working conditions |
title | Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodecomposition%20and%20thermal%20decomposition%20in%20methylammonium%20halide%20lead%20perovskites%20and%20inferred%20design%20principles%20to%20increase%20photovoltaic%20device%20stability&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Juarez-Perez,%20Emilio%20J&rft.date=2018&rft.volume=6&rft.issue=2&rft.spage=964&rft.epage=9612&rft.pages=964-9612&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta03501f&rft_dat=%3Cproquest_cross%3E2042367439%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-45280caeb89cb03507f1d4f05e1c49bdf1d1d71fc440e6c647e0c63e756c3e903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2042367439&rft_id=info:pmid/&rfr_iscdi=true |