Loading…

Self-assembling outside equilibrium: emergence of structures mediated by dissipation

A set of disordered interacting building blocks may form ordered structures by means of a self-assembling process. An external intervention in the system by adding a chemical species or by applying forces leads to different self-assembly scenarios with the appearance of new structures. For instance,...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2019-08, Vol.21 (32), p.17475-17493
Main Authors: Arango-Restrepo, A, Barragn, D, Rubi, J. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A set of disordered interacting building blocks may form ordered structures by means of a self-assembling process. An external intervention in the system by adding a chemical species or by applying forces leads to different self-assembly scenarios with the appearance of new structures. For instance, the formation of microtubules, gels, virus capsides, cells and living beings among others takes place by self-assembly under nonequilibrium conditions. A general evolution criterion able to account for why nature selects some structures outside equilibrium and not others is lacking. Nevertheless, progress in the understanding of nonequilibrium self-assembly (NESA) mechanisms has been made thanks to the formulation of models that take particular situations into consideration. We review recent efforts devoted to describing self-assembly out of equilibrium and we provide a reference linking several current concepts in order to help in the development of new models and experimental studies. We hope that the knowledge of the intimate mechanisms leading to the formation of structures will make the implementation of re-configurable and bio-inspired materials possible and give a simpler perspective on the understanding of the emergence of life. Self-assembly under non-equilibrium conditions may give rise to the formation of structures not available at equilibrium.
ISSN:1463-9076
1463-9084
DOI:10.1039/c9cp01088b