Loading…
Selective light trapping of plasmonic stack metamaterials by circuit design
Plasmonic metamaterials have wide applications in light trapping and manipulation. However, most of their design typically rely on solving Maxwell's equations via computational electromagnetics, which is time-consuming and limits design flexibility. Here, we combined the transmission line circu...
Saved in:
Published in: | Nanoscale 2020-01, Vol.12 (3), p.257-262 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3 |
container_end_page | 262 |
container_issue | 3 |
container_start_page | 257 |
container_title | Nanoscale |
container_volume | 12 |
creator | Zhu, Jinfeng Zhang, Lirong Jiang, Shan Ou, Jun-Yu Liu, Qing Huo |
description | Plasmonic metamaterials have wide applications in light trapping and manipulation. However, most of their design typically rely on solving Maxwell's equations
via
computational electromagnetics, which is time-consuming and limits design flexibility. Here, we combined the transmission line circuit theory with full wave simulation to design plasmonic stack metamaterials in the near-infrared range. By virtue of the simplicity and high efficiency of circuit theory, we designed various light trapping functions by using plasmonic stack metamaterials, including comb filtering, short pass, long pass, band pass and band stop. Our study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.
The study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials. |
doi_str_mv | 10.1039/c9nr07937h |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9NR07937H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343480473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3</originalsourceid><addsrcrecordid>eNpd0UtLAzEQB_Agiq3Vi3cl4EWEapJJN5ujFF9YFHyclzQ7W1P3ZZIV_PauVit4ysD8GCb_IWSfs1POQJ9ZXXumNKiXDTIUTLIxgBKb6zqRA7ITwpKxREMC22QAXHORTmBIbh-xRBvdO9LSLV4ijd60rasXtCloW5pQNbWzNERjX2mF0VQmonemDHT-Qa3ztnOR5hjcot4lW0XfwL2fd0SeLy-eptfj2f3VzfR8NragII6l1prhXORpKsTcqMlESoaQG1EkKfI0kcBQG5RJghyAi0kqlLayECwFrnIYkePV3NY3bx2GmFUuWCxLU2PThUwASMV4__ueHv2jy6bzdb9dryTIlEkFvTpZKeubEDwWWetdZfxHxln2FXE21XcP3xFf9_jwZ2Q3rzBf099Me3CwAj7YdffvRvAJOTF-oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343480473</pqid></control><display><type>article</type><title>Selective light trapping of plasmonic stack metamaterials by circuit design</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Zhu, Jinfeng ; Zhang, Lirong ; Jiang, Shan ; Ou, Jun-Yu ; Liu, Qing Huo</creator><creatorcontrib>Zhu, Jinfeng ; Zhang, Lirong ; Jiang, Shan ; Ou, Jun-Yu ; Liu, Qing Huo</creatorcontrib><description>Plasmonic metamaterials have wide applications in light trapping and manipulation. However, most of their design typically rely on solving Maxwell's equations
via
computational electromagnetics, which is time-consuming and limits design flexibility. Here, we combined the transmission line circuit theory with full wave simulation to design plasmonic stack metamaterials in the near-infrared range. By virtue of the simplicity and high efficiency of circuit theory, we designed various light trapping functions by using plasmonic stack metamaterials, including comb filtering, short pass, long pass, band pass and band stop. Our study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.
The study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr07937h</identifier><identifier>PMID: 31912853</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Circuit design ; Computational electromagnetics ; Computer simulation ; Maxwell's equations ; Metamaterials ; Transmission lines ; Trapping</subject><ispartof>Nanoscale, 2020-01, Vol.12 (3), p.257-262</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3</citedby><cites>FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3</cites><orcidid>0000-0001-8028-6130 ; 0000-0003-3666-6763 ; 0000-0001-5286-4423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31912853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jinfeng</creatorcontrib><creatorcontrib>Zhang, Lirong</creatorcontrib><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Ou, Jun-Yu</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><title>Selective light trapping of plasmonic stack metamaterials by circuit design</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Plasmonic metamaterials have wide applications in light trapping and manipulation. However, most of their design typically rely on solving Maxwell's equations
via
computational electromagnetics, which is time-consuming and limits design flexibility. Here, we combined the transmission line circuit theory with full wave simulation to design plasmonic stack metamaterials in the near-infrared range. By virtue of the simplicity and high efficiency of circuit theory, we designed various light trapping functions by using plasmonic stack metamaterials, including comb filtering, short pass, long pass, band pass and band stop. Our study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.
The study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.</description><subject>Circuit design</subject><subject>Computational electromagnetics</subject><subject>Computer simulation</subject><subject>Maxwell's equations</subject><subject>Metamaterials</subject><subject>Transmission lines</subject><subject>Trapping</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLAzEQB_Agiq3Vi3cl4EWEapJJN5ujFF9YFHyclzQ7W1P3ZZIV_PauVit4ysD8GCb_IWSfs1POQJ9ZXXumNKiXDTIUTLIxgBKb6zqRA7ITwpKxREMC22QAXHORTmBIbh-xRBvdO9LSLV4ijd60rasXtCloW5pQNbWzNERjX2mF0VQmonemDHT-Qa3ztnOR5hjcot4lW0XfwL2fd0SeLy-eptfj2f3VzfR8NragII6l1prhXORpKsTcqMlESoaQG1EkKfI0kcBQG5RJghyAi0kqlLayECwFrnIYkePV3NY3bx2GmFUuWCxLU2PThUwASMV4__ueHv2jy6bzdb9dryTIlEkFvTpZKeubEDwWWetdZfxHxln2FXE21XcP3xFf9_jwZ2Q3rzBf099Me3CwAj7YdffvRvAJOTF-oQ</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Zhu, Jinfeng</creator><creator>Zhang, Lirong</creator><creator>Jiang, Shan</creator><creator>Ou, Jun-Yu</creator><creator>Liu, Qing Huo</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8028-6130</orcidid><orcidid>https://orcid.org/0000-0003-3666-6763</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid></search><sort><creationdate>20200123</creationdate><title>Selective light trapping of plasmonic stack metamaterials by circuit design</title><author>Zhu, Jinfeng ; Zhang, Lirong ; Jiang, Shan ; Ou, Jun-Yu ; Liu, Qing Huo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuit design</topic><topic>Computational electromagnetics</topic><topic>Computer simulation</topic><topic>Maxwell's equations</topic><topic>Metamaterials</topic><topic>Transmission lines</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jinfeng</creatorcontrib><creatorcontrib>Zhang, Lirong</creatorcontrib><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Ou, Jun-Yu</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jinfeng</au><au>Zhang, Lirong</au><au>Jiang, Shan</au><au>Ou, Jun-Yu</au><au>Liu, Qing Huo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective light trapping of plasmonic stack metamaterials by circuit design</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2020-01-23</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>257</spage><epage>262</epage><pages>257-262</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Plasmonic metamaterials have wide applications in light trapping and manipulation. However, most of their design typically rely on solving Maxwell's equations
via
computational electromagnetics, which is time-consuming and limits design flexibility. Here, we combined the transmission line circuit theory with full wave simulation to design plasmonic stack metamaterials in the near-infrared range. By virtue of the simplicity and high efficiency of circuit theory, we designed various light trapping functions by using plasmonic stack metamaterials, including comb filtering, short pass, long pass, band pass and band stop. Our study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.
The study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31912853</pmid><doi>10.1039/c9nr07937h</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8028-6130</orcidid><orcidid>https://orcid.org/0000-0003-3666-6763</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2020-01, Vol.12 (3), p.257-262 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9NR07937H |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Circuit design Computational electromagnetics Computer simulation Maxwell's equations Metamaterials Transmission lines Trapping |
title | Selective light trapping of plasmonic stack metamaterials by circuit design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20light%20trapping%20of%20plasmonic%20stack%20metamaterials%20by%20circuit%20design&rft.jtitle=Nanoscale&rft.au=Zhu,%20Jinfeng&rft.date=2020-01-23&rft.volume=12&rft.issue=3&rft.spage=257&rft.epage=262&rft.pages=257-262&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr07937h&rft_dat=%3Cproquest_cross%3E2343480473%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343480473&rft_id=info:pmid/31912853&rfr_iscdi=true |