Loading…

Selective light trapping of plasmonic stack metamaterials by circuit design

Plasmonic metamaterials have wide applications in light trapping and manipulation. However, most of their design typically rely on solving Maxwell's equations via computational electromagnetics, which is time-consuming and limits design flexibility. Here, we combined the transmission line circu...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2020-01, Vol.12 (3), p.257-262
Main Authors: Zhu, Jinfeng, Zhang, Lirong, Jiang, Shan, Ou, Jun-Yu, Liu, Qing Huo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3
cites cdi_FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3
container_end_page 262
container_issue 3
container_start_page 257
container_title Nanoscale
container_volume 12
creator Zhu, Jinfeng
Zhang, Lirong
Jiang, Shan
Ou, Jun-Yu
Liu, Qing Huo
description Plasmonic metamaterials have wide applications in light trapping and manipulation. However, most of their design typically rely on solving Maxwell's equations via computational electromagnetics, which is time-consuming and limits design flexibility. Here, we combined the transmission line circuit theory with full wave simulation to design plasmonic stack metamaterials in the near-infrared range. By virtue of the simplicity and high efficiency of circuit theory, we designed various light trapping functions by using plasmonic stack metamaterials, including comb filtering, short pass, long pass, band pass and band stop. Our study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials. The study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.
doi_str_mv 10.1039/c9nr07937h
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9NR07937H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343480473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3</originalsourceid><addsrcrecordid>eNpd0UtLAzEQB_Agiq3Vi3cl4EWEapJJN5ujFF9YFHyclzQ7W1P3ZZIV_PauVit4ysD8GCb_IWSfs1POQJ9ZXXumNKiXDTIUTLIxgBKb6zqRA7ITwpKxREMC22QAXHORTmBIbh-xRBvdO9LSLV4ijd60rasXtCloW5pQNbWzNERjX2mF0VQmonemDHT-Qa3ztnOR5hjcot4lW0XfwL2fd0SeLy-eptfj2f3VzfR8NragII6l1prhXORpKsTcqMlESoaQG1EkKfI0kcBQG5RJghyAi0kqlLayECwFrnIYkePV3NY3bx2GmFUuWCxLU2PThUwASMV4__ueHv2jy6bzdb9dryTIlEkFvTpZKeubEDwWWetdZfxHxln2FXE21XcP3xFf9_jwZ2Q3rzBf099Me3CwAj7YdffvRvAJOTF-oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343480473</pqid></control><display><type>article</type><title>Selective light trapping of plasmonic stack metamaterials by circuit design</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Zhu, Jinfeng ; Zhang, Lirong ; Jiang, Shan ; Ou, Jun-Yu ; Liu, Qing Huo</creator><creatorcontrib>Zhu, Jinfeng ; Zhang, Lirong ; Jiang, Shan ; Ou, Jun-Yu ; Liu, Qing Huo</creatorcontrib><description>Plasmonic metamaterials have wide applications in light trapping and manipulation. However, most of their design typically rely on solving Maxwell's equations via computational electromagnetics, which is time-consuming and limits design flexibility. Here, we combined the transmission line circuit theory with full wave simulation to design plasmonic stack metamaterials in the near-infrared range. By virtue of the simplicity and high efficiency of circuit theory, we designed various light trapping functions by using plasmonic stack metamaterials, including comb filtering, short pass, long pass, band pass and band stop. Our study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials. The study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr07937h</identifier><identifier>PMID: 31912853</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Circuit design ; Computational electromagnetics ; Computer simulation ; Maxwell's equations ; Metamaterials ; Transmission lines ; Trapping</subject><ispartof>Nanoscale, 2020-01, Vol.12 (3), p.257-262</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3</citedby><cites>FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3</cites><orcidid>0000-0001-8028-6130 ; 0000-0003-3666-6763 ; 0000-0001-5286-4423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31912853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jinfeng</creatorcontrib><creatorcontrib>Zhang, Lirong</creatorcontrib><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Ou, Jun-Yu</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><title>Selective light trapping of plasmonic stack metamaterials by circuit design</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Plasmonic metamaterials have wide applications in light trapping and manipulation. However, most of their design typically rely on solving Maxwell's equations via computational electromagnetics, which is time-consuming and limits design flexibility. Here, we combined the transmission line circuit theory with full wave simulation to design plasmonic stack metamaterials in the near-infrared range. By virtue of the simplicity and high efficiency of circuit theory, we designed various light trapping functions by using plasmonic stack metamaterials, including comb filtering, short pass, long pass, band pass and band stop. Our study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials. The study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.</description><subject>Circuit design</subject><subject>Computational electromagnetics</subject><subject>Computer simulation</subject><subject>Maxwell's equations</subject><subject>Metamaterials</subject><subject>Transmission lines</subject><subject>Trapping</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLAzEQB_Agiq3Vi3cl4EWEapJJN5ujFF9YFHyclzQ7W1P3ZZIV_PauVit4ysD8GCb_IWSfs1POQJ9ZXXumNKiXDTIUTLIxgBKb6zqRA7ITwpKxREMC22QAXHORTmBIbh-xRBvdO9LSLV4ijd60rasXtCloW5pQNbWzNERjX2mF0VQmonemDHT-Qa3ztnOR5hjcot4lW0XfwL2fd0SeLy-eptfj2f3VzfR8NragII6l1prhXORpKsTcqMlESoaQG1EkKfI0kcBQG5RJghyAi0kqlLayECwFrnIYkePV3NY3bx2GmFUuWCxLU2PThUwASMV4__ueHv2jy6bzdb9dryTIlEkFvTpZKeubEDwWWetdZfxHxln2FXE21XcP3xFf9_jwZ2Q3rzBf099Me3CwAj7YdffvRvAJOTF-oQ</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Zhu, Jinfeng</creator><creator>Zhang, Lirong</creator><creator>Jiang, Shan</creator><creator>Ou, Jun-Yu</creator><creator>Liu, Qing Huo</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8028-6130</orcidid><orcidid>https://orcid.org/0000-0003-3666-6763</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid></search><sort><creationdate>20200123</creationdate><title>Selective light trapping of plasmonic stack metamaterials by circuit design</title><author>Zhu, Jinfeng ; Zhang, Lirong ; Jiang, Shan ; Ou, Jun-Yu ; Liu, Qing Huo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuit design</topic><topic>Computational electromagnetics</topic><topic>Computer simulation</topic><topic>Maxwell's equations</topic><topic>Metamaterials</topic><topic>Transmission lines</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jinfeng</creatorcontrib><creatorcontrib>Zhang, Lirong</creatorcontrib><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Ou, Jun-Yu</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jinfeng</au><au>Zhang, Lirong</au><au>Jiang, Shan</au><au>Ou, Jun-Yu</au><au>Liu, Qing Huo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective light trapping of plasmonic stack metamaterials by circuit design</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2020-01-23</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>257</spage><epage>262</epage><pages>257-262</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Plasmonic metamaterials have wide applications in light trapping and manipulation. However, most of their design typically rely on solving Maxwell's equations via computational electromagnetics, which is time-consuming and limits design flexibility. Here, we combined the transmission line circuit theory with full wave simulation to design plasmonic stack metamaterials in the near-infrared range. By virtue of the simplicity and high efficiency of circuit theory, we designed various light trapping functions by using plasmonic stack metamaterials, including comb filtering, short pass, long pass, band pass and band stop. Our study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials. The study reveals the field-circuit relationship for the light-matter interaction of nanostructure stacks and provides a powerful method for the quick design of functional plasmonic metamaterials.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31912853</pmid><doi>10.1039/c9nr07937h</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8028-6130</orcidid><orcidid>https://orcid.org/0000-0003-3666-6763</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-01, Vol.12 (3), p.257-262
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_C9NR07937H
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Circuit design
Computational electromagnetics
Computer simulation
Maxwell's equations
Metamaterials
Transmission lines
Trapping
title Selective light trapping of plasmonic stack metamaterials by circuit design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20light%20trapping%20of%20plasmonic%20stack%20metamaterials%20by%20circuit%20design&rft.jtitle=Nanoscale&rft.au=Zhu,%20Jinfeng&rft.date=2020-01-23&rft.volume=12&rft.issue=3&rft.spage=257&rft.epage=262&rft.pages=257-262&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr07937h&rft_dat=%3Cproquest_cross%3E2343480473%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-49990eb2d8822ba755440e3da2f68e186430e9ae466e1331258279c4f208317d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343480473&rft_id=info:pmid/31912853&rfr_iscdi=true