Loading…
TetraPh-Tol-BITIOPO: a new atropisomeric 3,3′-bithiophene based phosphine oxide as an organocatalyst in Lewis base-catalyzed Lewis acid mediated reactions
A new chiral phosphine oxide based on a 3,3′-bithiophene scaffold (TetraPh-Tol-BITIOPO) was synthesized, fully characterized and separated into antipodes through chiral HPLC. This new compound was successfully employed as an organocatalyst in Lewis base-catalyzed Lewis acid mediated reactions involv...
Saved in:
Published in: | Organic & biomolecular chemistry 2019-08, Vol.17 (32), p.7474-7481 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new chiral phosphine oxide based on a 3,3′-bithiophene scaffold (TetraPh-Tol-BITIOPO) was synthesized, fully characterized and separated into antipodes through chiral HPLC. This new compound was successfully employed as an organocatalyst in Lewis base-catalyzed Lewis acid mediated reactions involving trichlorosilyl compounds. The new atropisomeric catalyst was able to promote the allylation of aldehydes with allyltrichlorosilane in up to 98% yield and up to 96% enantiomeric excess (ee), and the direct aldol reaction to afford β-hydroxy ketones and β-hydroxy thioesters, with good chemical yields and modest stereochemical efficiency. Computational studies helped to elucidate and to rationalize the stereochemical outcome of the reactions catalyzed by TetraPh-Tol-BITIOPO that was found to favour the formation of the isomer with an opposite absolute configuration in comparison with the products obtained with the previously reported 3,3′-bithiophene-based catalyst.
A new chiral phosphine oxide based on a 3,3′-bithiophene scaffold (TetraPh-Tol-BITIOPO) was synthesized, fully characterized and separated into antipodes through chiral HPLC. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/c9ob01297d |