Loading…

Non-redox doping boosts oxygen evolution electrocatalysis on hematite

The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe 2 O 3 , would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2020-03, Vol.11 (9), p.2464-2471
Main Authors: Nguyën, Huu Chuong, Garcés-Pineda, Felipe Andrés, de Fez-Febré, Mabel, Galán-Mascarós, José Ramón, López, Núria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3
cites cdi_FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3
container_end_page 2471
container_issue 9
container_start_page 2464
container_title Chemical science (Cambridge)
container_volume 11
creator Nguyën, Huu Chuong
Garcés-Pineda, Felipe Andrés
de Fez-Febré, Mabel
Galán-Mascarós, José Ramón
López, Núria
description The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe 2 O 3 , would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite its promising theoretical potential, it has demonstrated very poor OER activity under multiple experimental conditions, significantly worse than that of Co or Ni-based oxides. In the search for improving hematite performance, we have analysed the effect of doping with redox vs. non-redox active species (Ni or Zn). Our results indicate that Zn doping clearly outperforms Ni, commonly accepted as a preferred dopant. Zn-doped hematite exhibits catalytic performances close to the state-of-the-art for alkaline water splitting: reaching 10 mA cm −2 at just 350 mV overpotential ( η ) at pH 13, thus twenty times that of hematite. Such a catalytic enhancement can be traced back to a dramatic change in the reaction pathway. Incorporation of Ni, as previously suggested, decreases the energetic barrier for the OER on the available centres. In contrast, Zn facilitates the appearance of a dominant and faster alternative via a two-site reaction, where the four electron oxidation reaction starts on Fe, but is completed on Zn after thermodynamically favoured proton coupled electron transfer between adjacent metal centres. This unique behaviour is prompted by the non-redox character of Zn centres, which maintain the same charge during OER. Our results open an alternative role for dopants on oxide surfaces and provide a powerful approach for catalytic optimisation of oxides, including but not limited to highly preferred all-iron oxides. The distinct beneficial effect of Zn-doping on the OER alkaline activity of Fe-based catalysts points towards an alternative and faster two-site mechanism.
doi_str_mv 10.1039/c9sc05669f
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9SC05669F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371110246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3</originalsourceid><addsrcrecordid>eNp9kUFLxDAQhYMoKroX70LFiwjVpEma5iLI4qogelDPIU2ma6XbrEkqu__e6MqKHpzLDLyPxxseQgcEnxFM5bmRwWBelrLZQLsFZiQvOZWb67vAO2gUwitOQynhhdhGO5ThijFCdtHVvetzD9YtMuvmbT_NaudCDJlbLKfQZ_DuuiG2Ll0dmOid0VF3y9Amos9eYKZjG2EfbTW6CzD63nvoeXL1NL7J7x6ub8eXd7lhUsScAJe0wqwSnLBC85pDw8Cm-DWuhdC6qmQJ2hZlg6ktWCkqoxtWWmptJaile-hi5Tsf6hlYA330ulNz3860XyqnW_Vb6dsXNXXvqiJcMCKTwcm3gXdvA4SoZm0w0HW6BzcEVXAqSkaw4Ak9_oO-usH36T1VUEEIwSlgok5XlPEuBA_NOgzB6rMgNZaP46-CJgk-XME-mDX3U2DSj_7T1dw29AN9KJdn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371110246</pqid></control><display><type>article</type><title>Non-redox doping boosts oxygen evolution electrocatalysis on hematite</title><source>PubMed Central</source><creator>Nguyën, Huu Chuong ; Garcés-Pineda, Felipe Andrés ; de Fez-Febré, Mabel ; Galán-Mascarós, José Ramón ; López, Núria</creator><creatorcontrib>Nguyën, Huu Chuong ; Garcés-Pineda, Felipe Andrés ; de Fez-Febré, Mabel ; Galán-Mascarós, José Ramón ; López, Núria</creatorcontrib><description>The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe 2 O 3 , would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite its promising theoretical potential, it has demonstrated very poor OER activity under multiple experimental conditions, significantly worse than that of Co or Ni-based oxides. In the search for improving hematite performance, we have analysed the effect of doping with redox vs. non-redox active species (Ni or Zn). Our results indicate that Zn doping clearly outperforms Ni, commonly accepted as a preferred dopant. Zn-doped hematite exhibits catalytic performances close to the state-of-the-art for alkaline water splitting: reaching 10 mA cm −2 at just 350 mV overpotential ( η ) at pH 13, thus twenty times that of hematite. Such a catalytic enhancement can be traced back to a dramatic change in the reaction pathway. Incorporation of Ni, as previously suggested, decreases the energetic barrier for the OER on the available centres. In contrast, Zn facilitates the appearance of a dominant and faster alternative via a two-site reaction, where the four electron oxidation reaction starts on Fe, but is completed on Zn after thermodynamically favoured proton coupled electron transfer between adjacent metal centres. This unique behaviour is prompted by the non-redox character of Zn centres, which maintain the same charge during OER. Our results open an alternative role for dopants on oxide surfaces and provide a powerful approach for catalytic optimisation of oxides, including but not limited to highly preferred all-iron oxides. The distinct beneficial effect of Zn-doping on the OER alkaline activity of Fe-based catalysts points towards an alternative and faster two-site mechanism.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc05669f</identifier><identifier>PMID: 34084411</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Dopants ; Doping ; Electrolysis ; Electron transfer ; Hematite ; Iron oxides ; Optimization ; Oxidation ; Oxides ; Oxygen evolution reactions ; Water splitting ; Zinc</subject><ispartof>Chemical science (Cambridge), 2020-03, Vol.11 (9), p.2464-2471</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3</citedby><cites>FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3</cites><orcidid>0000-0001-7983-9762 ; 0000-0002-2307-4921 ; 0000-0001-5759-9980 ; 0000-0001-9150-5941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157419/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157419/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Nguyën, Huu Chuong</creatorcontrib><creatorcontrib>Garcés-Pineda, Felipe Andrés</creatorcontrib><creatorcontrib>de Fez-Febré, Mabel</creatorcontrib><creatorcontrib>Galán-Mascarós, José Ramón</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><title>Non-redox doping boosts oxygen evolution electrocatalysis on hematite</title><title>Chemical science (Cambridge)</title><description>The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe 2 O 3 , would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite its promising theoretical potential, it has demonstrated very poor OER activity under multiple experimental conditions, significantly worse than that of Co or Ni-based oxides. In the search for improving hematite performance, we have analysed the effect of doping with redox vs. non-redox active species (Ni or Zn). Our results indicate that Zn doping clearly outperforms Ni, commonly accepted as a preferred dopant. Zn-doped hematite exhibits catalytic performances close to the state-of-the-art for alkaline water splitting: reaching 10 mA cm −2 at just 350 mV overpotential ( η ) at pH 13, thus twenty times that of hematite. Such a catalytic enhancement can be traced back to a dramatic change in the reaction pathway. Incorporation of Ni, as previously suggested, decreases the energetic barrier for the OER on the available centres. In contrast, Zn facilitates the appearance of a dominant and faster alternative via a two-site reaction, where the four electron oxidation reaction starts on Fe, but is completed on Zn after thermodynamically favoured proton coupled electron transfer between adjacent metal centres. This unique behaviour is prompted by the non-redox character of Zn centres, which maintain the same charge during OER. Our results open an alternative role for dopants on oxide surfaces and provide a powerful approach for catalytic optimisation of oxides, including but not limited to highly preferred all-iron oxides. The distinct beneficial effect of Zn-doping on the OER alkaline activity of Fe-based catalysts points towards an alternative and faster two-site mechanism.</description><subject>Chemistry</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electrolysis</subject><subject>Electron transfer</subject><subject>Hematite</subject><subject>Iron oxides</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Oxygen evolution reactions</subject><subject>Water splitting</subject><subject>Zinc</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFLxDAQhYMoKroX70LFiwjVpEma5iLI4qogelDPIU2ma6XbrEkqu__e6MqKHpzLDLyPxxseQgcEnxFM5bmRwWBelrLZQLsFZiQvOZWb67vAO2gUwitOQynhhdhGO5ThijFCdtHVvetzD9YtMuvmbT_NaudCDJlbLKfQZ_DuuiG2Ll0dmOid0VF3y9Amos9eYKZjG2EfbTW6CzD63nvoeXL1NL7J7x6ub8eXd7lhUsScAJe0wqwSnLBC85pDw8Cm-DWuhdC6qmQJ2hZlg6ktWCkqoxtWWmptJaile-hi5Tsf6hlYA330ulNz3860XyqnW_Vb6dsXNXXvqiJcMCKTwcm3gXdvA4SoZm0w0HW6BzcEVXAqSkaw4Ak9_oO-usH36T1VUEEIwSlgok5XlPEuBA_NOgzB6rMgNZaP46-CJgk-XME-mDX3U2DSj_7T1dw29AN9KJdn</recordid><startdate>20200307</startdate><enddate>20200307</enddate><creator>Nguyën, Huu Chuong</creator><creator>Garcés-Pineda, Felipe Andrés</creator><creator>de Fez-Febré, Mabel</creator><creator>Galán-Mascarós, José Ramón</creator><creator>López, Núria</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7983-9762</orcidid><orcidid>https://orcid.org/0000-0002-2307-4921</orcidid><orcidid>https://orcid.org/0000-0001-5759-9980</orcidid><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid></search><sort><creationdate>20200307</creationdate><title>Non-redox doping boosts oxygen evolution electrocatalysis on hematite</title><author>Nguyën, Huu Chuong ; Garcés-Pineda, Felipe Andrés ; de Fez-Febré, Mabel ; Galán-Mascarós, José Ramón ; López, Núria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electrolysis</topic><topic>Electron transfer</topic><topic>Hematite</topic><topic>Iron oxides</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Oxygen evolution reactions</topic><topic>Water splitting</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyën, Huu Chuong</creatorcontrib><creatorcontrib>Garcés-Pineda, Felipe Andrés</creatorcontrib><creatorcontrib>de Fez-Febré, Mabel</creatorcontrib><creatorcontrib>Galán-Mascarós, José Ramón</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyën, Huu Chuong</au><au>Garcés-Pineda, Felipe Andrés</au><au>de Fez-Febré, Mabel</au><au>Galán-Mascarós, José Ramón</au><au>López, Núria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-redox doping boosts oxygen evolution electrocatalysis on hematite</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-03-07</date><risdate>2020</risdate><volume>11</volume><issue>9</issue><spage>2464</spage><epage>2471</epage><pages>2464-2471</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe 2 O 3 , would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite its promising theoretical potential, it has demonstrated very poor OER activity under multiple experimental conditions, significantly worse than that of Co or Ni-based oxides. In the search for improving hematite performance, we have analysed the effect of doping with redox vs. non-redox active species (Ni or Zn). Our results indicate that Zn doping clearly outperforms Ni, commonly accepted as a preferred dopant. Zn-doped hematite exhibits catalytic performances close to the state-of-the-art for alkaline water splitting: reaching 10 mA cm −2 at just 350 mV overpotential ( η ) at pH 13, thus twenty times that of hematite. Such a catalytic enhancement can be traced back to a dramatic change in the reaction pathway. Incorporation of Ni, as previously suggested, decreases the energetic barrier for the OER on the available centres. In contrast, Zn facilitates the appearance of a dominant and faster alternative via a two-site reaction, where the four electron oxidation reaction starts on Fe, but is completed on Zn after thermodynamically favoured proton coupled electron transfer between adjacent metal centres. This unique behaviour is prompted by the non-redox character of Zn centres, which maintain the same charge during OER. Our results open an alternative role for dopants on oxide surfaces and provide a powerful approach for catalytic optimisation of oxides, including but not limited to highly preferred all-iron oxides. The distinct beneficial effect of Zn-doping on the OER alkaline activity of Fe-based catalysts points towards an alternative and faster two-site mechanism.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34084411</pmid><doi>10.1039/c9sc05669f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7983-9762</orcidid><orcidid>https://orcid.org/0000-0002-2307-4921</orcidid><orcidid>https://orcid.org/0000-0001-5759-9980</orcidid><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2020-03, Vol.11 (9), p.2464-2471
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_C9SC05669F
source PubMed Central
subjects Chemistry
Dopants
Doping
Electrolysis
Electron transfer
Hematite
Iron oxides
Optimization
Oxidation
Oxides
Oxygen evolution reactions
Water splitting
Zinc
title Non-redox doping boosts oxygen evolution electrocatalysis on hematite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-redox%20doping%20boosts%20oxygen%20evolution%20electrocatalysis%20on%20hematite&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Nguy%C3%ABn,%20Huu%20Chuong&rft.date=2020-03-07&rft.volume=11&rft.issue=9&rft.spage=2464&rft.epage=2471&rft.pages=2464-2471&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc05669f&rft_dat=%3Cproquest_cross%3E2371110246%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2371110246&rft_id=info:pmid/34084411&rfr_iscdi=true