Loading…
Non-redox doping boosts oxygen evolution electrocatalysis on hematite
The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe 2 O 3 , would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite...
Saved in:
Published in: | Chemical science (Cambridge) 2020-03, Vol.11 (9), p.2464-2471 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3 |
container_end_page | 2471 |
container_issue | 9 |
container_start_page | 2464 |
container_title | Chemical science (Cambridge) |
container_volume | 11 |
creator | Nguyën, Huu Chuong Garcés-Pineda, Felipe Andrés de Fez-Febré, Mabel Galán-Mascarós, José Ramón López, Núria |
description | The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe
2
O
3
, would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite its promising theoretical potential, it has demonstrated very poor OER activity under multiple experimental conditions, significantly worse than that of Co or Ni-based oxides. In the search for improving hematite performance, we have analysed the effect of doping with redox
vs.
non-redox active species (Ni or Zn). Our results indicate that Zn doping clearly outperforms Ni, commonly accepted as a preferred dopant. Zn-doped hematite exhibits catalytic performances close to the state-of-the-art for alkaline water splitting: reaching 10 mA cm
−2
at just 350 mV overpotential (
η
) at pH 13, thus twenty times that of hematite. Such a catalytic enhancement can be traced back to a dramatic change in the reaction pathway. Incorporation of Ni, as previously suggested, decreases the energetic barrier for the OER on the available centres. In contrast, Zn facilitates the appearance of a dominant and faster alternative
via
a two-site reaction, where the four electron oxidation reaction starts on Fe, but is completed on Zn after thermodynamically favoured proton coupled electron transfer between adjacent metal centres. This unique behaviour is prompted by the non-redox character of Zn centres, which maintain the same charge during OER. Our results open an alternative role for dopants on oxide surfaces and provide a powerful approach for catalytic optimisation of oxides, including but not limited to highly preferred all-iron oxides.
The distinct beneficial effect of Zn-doping on the OER alkaline activity of Fe-based catalysts points towards an alternative and faster two-site mechanism. |
doi_str_mv | 10.1039/c9sc05669f |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9SC05669F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371110246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3</originalsourceid><addsrcrecordid>eNp9kUFLxDAQhYMoKroX70LFiwjVpEma5iLI4qogelDPIU2ma6XbrEkqu__e6MqKHpzLDLyPxxseQgcEnxFM5bmRwWBelrLZQLsFZiQvOZWb67vAO2gUwitOQynhhdhGO5ThijFCdtHVvetzD9YtMuvmbT_NaudCDJlbLKfQZ_DuuiG2Ll0dmOid0VF3y9Amos9eYKZjG2EfbTW6CzD63nvoeXL1NL7J7x6ub8eXd7lhUsScAJe0wqwSnLBC85pDw8Cm-DWuhdC6qmQJ2hZlg6ktWCkqoxtWWmptJaile-hi5Tsf6hlYA330ulNz3860XyqnW_Vb6dsXNXXvqiJcMCKTwcm3gXdvA4SoZm0w0HW6BzcEVXAqSkaw4Ak9_oO-usH36T1VUEEIwSlgok5XlPEuBA_NOgzB6rMgNZaP46-CJgk-XME-mDX3U2DSj_7T1dw29AN9KJdn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371110246</pqid></control><display><type>article</type><title>Non-redox doping boosts oxygen evolution electrocatalysis on hematite</title><source>PubMed Central</source><creator>Nguyën, Huu Chuong ; Garcés-Pineda, Felipe Andrés ; de Fez-Febré, Mabel ; Galán-Mascarós, José Ramón ; López, Núria</creator><creatorcontrib>Nguyën, Huu Chuong ; Garcés-Pineda, Felipe Andrés ; de Fez-Febré, Mabel ; Galán-Mascarós, José Ramón ; López, Núria</creatorcontrib><description>The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe
2
O
3
, would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite its promising theoretical potential, it has demonstrated very poor OER activity under multiple experimental conditions, significantly worse than that of Co or Ni-based oxides. In the search for improving hematite performance, we have analysed the effect of doping with redox
vs.
non-redox active species (Ni or Zn). Our results indicate that Zn doping clearly outperforms Ni, commonly accepted as a preferred dopant. Zn-doped hematite exhibits catalytic performances close to the state-of-the-art for alkaline water splitting: reaching 10 mA cm
−2
at just 350 mV overpotential (
η
) at pH 13, thus twenty times that of hematite. Such a catalytic enhancement can be traced back to a dramatic change in the reaction pathway. Incorporation of Ni, as previously suggested, decreases the energetic barrier for the OER on the available centres. In contrast, Zn facilitates the appearance of a dominant and faster alternative
via
a two-site reaction, where the four electron oxidation reaction starts on Fe, but is completed on Zn after thermodynamically favoured proton coupled electron transfer between adjacent metal centres. This unique behaviour is prompted by the non-redox character of Zn centres, which maintain the same charge during OER. Our results open an alternative role for dopants on oxide surfaces and provide a powerful approach for catalytic optimisation of oxides, including but not limited to highly preferred all-iron oxides.
The distinct beneficial effect of Zn-doping on the OER alkaline activity of Fe-based catalysts points towards an alternative and faster two-site mechanism.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc05669f</identifier><identifier>PMID: 34084411</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Dopants ; Doping ; Electrolysis ; Electron transfer ; Hematite ; Iron oxides ; Optimization ; Oxidation ; Oxides ; Oxygen evolution reactions ; Water splitting ; Zinc</subject><ispartof>Chemical science (Cambridge), 2020-03, Vol.11 (9), p.2464-2471</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3</citedby><cites>FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3</cites><orcidid>0000-0001-7983-9762 ; 0000-0002-2307-4921 ; 0000-0001-5759-9980 ; 0000-0001-9150-5941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157419/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157419/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Nguyën, Huu Chuong</creatorcontrib><creatorcontrib>Garcés-Pineda, Felipe Andrés</creatorcontrib><creatorcontrib>de Fez-Febré, Mabel</creatorcontrib><creatorcontrib>Galán-Mascarós, José Ramón</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><title>Non-redox doping boosts oxygen evolution electrocatalysis on hematite</title><title>Chemical science (Cambridge)</title><description>The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe
2
O
3
, would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite its promising theoretical potential, it has demonstrated very poor OER activity under multiple experimental conditions, significantly worse than that of Co or Ni-based oxides. In the search for improving hematite performance, we have analysed the effect of doping with redox
vs.
non-redox active species (Ni or Zn). Our results indicate that Zn doping clearly outperforms Ni, commonly accepted as a preferred dopant. Zn-doped hematite exhibits catalytic performances close to the state-of-the-art for alkaline water splitting: reaching 10 mA cm
−2
at just 350 mV overpotential (
η
) at pH 13, thus twenty times that of hematite. Such a catalytic enhancement can be traced back to a dramatic change in the reaction pathway. Incorporation of Ni, as previously suggested, decreases the energetic barrier for the OER on the available centres. In contrast, Zn facilitates the appearance of a dominant and faster alternative
via
a two-site reaction, where the four electron oxidation reaction starts on Fe, but is completed on Zn after thermodynamically favoured proton coupled electron transfer between adjacent metal centres. This unique behaviour is prompted by the non-redox character of Zn centres, which maintain the same charge during OER. Our results open an alternative role for dopants on oxide surfaces and provide a powerful approach for catalytic optimisation of oxides, including but not limited to highly preferred all-iron oxides.
The distinct beneficial effect of Zn-doping on the OER alkaline activity of Fe-based catalysts points towards an alternative and faster two-site mechanism.</description><subject>Chemistry</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electrolysis</subject><subject>Electron transfer</subject><subject>Hematite</subject><subject>Iron oxides</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Oxygen evolution reactions</subject><subject>Water splitting</subject><subject>Zinc</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFLxDAQhYMoKroX70LFiwjVpEma5iLI4qogelDPIU2ma6XbrEkqu__e6MqKHpzLDLyPxxseQgcEnxFM5bmRwWBelrLZQLsFZiQvOZWb67vAO2gUwitOQynhhdhGO5ThijFCdtHVvetzD9YtMuvmbT_NaudCDJlbLKfQZ_DuuiG2Ll0dmOid0VF3y9Amos9eYKZjG2EfbTW6CzD63nvoeXL1NL7J7x6ub8eXd7lhUsScAJe0wqwSnLBC85pDw8Cm-DWuhdC6qmQJ2hZlg6ktWCkqoxtWWmptJaile-hi5Tsf6hlYA330ulNz3860XyqnW_Vb6dsXNXXvqiJcMCKTwcm3gXdvA4SoZm0w0HW6BzcEVXAqSkaw4Ak9_oO-usH36T1VUEEIwSlgok5XlPEuBA_NOgzB6rMgNZaP46-CJgk-XME-mDX3U2DSj_7T1dw29AN9KJdn</recordid><startdate>20200307</startdate><enddate>20200307</enddate><creator>Nguyën, Huu Chuong</creator><creator>Garcés-Pineda, Felipe Andrés</creator><creator>de Fez-Febré, Mabel</creator><creator>Galán-Mascarós, José Ramón</creator><creator>López, Núria</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7983-9762</orcidid><orcidid>https://orcid.org/0000-0002-2307-4921</orcidid><orcidid>https://orcid.org/0000-0001-5759-9980</orcidid><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid></search><sort><creationdate>20200307</creationdate><title>Non-redox doping boosts oxygen evolution electrocatalysis on hematite</title><author>Nguyën, Huu Chuong ; Garcés-Pineda, Felipe Andrés ; de Fez-Febré, Mabel ; Galán-Mascarós, José Ramón ; López, Núria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electrolysis</topic><topic>Electron transfer</topic><topic>Hematite</topic><topic>Iron oxides</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Oxygen evolution reactions</topic><topic>Water splitting</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyën, Huu Chuong</creatorcontrib><creatorcontrib>Garcés-Pineda, Felipe Andrés</creatorcontrib><creatorcontrib>de Fez-Febré, Mabel</creatorcontrib><creatorcontrib>Galán-Mascarós, José Ramón</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyën, Huu Chuong</au><au>Garcés-Pineda, Felipe Andrés</au><au>de Fez-Febré, Mabel</au><au>Galán-Mascarós, José Ramón</au><au>López, Núria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-redox doping boosts oxygen evolution electrocatalysis on hematite</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-03-07</date><risdate>2020</risdate><volume>11</volume><issue>9</issue><spage>2464</spage><epage>2471</epage><pages>2464-2471</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe
2
O
3
, would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite its promising theoretical potential, it has demonstrated very poor OER activity under multiple experimental conditions, significantly worse than that of Co or Ni-based oxides. In the search for improving hematite performance, we have analysed the effect of doping with redox
vs.
non-redox active species (Ni or Zn). Our results indicate that Zn doping clearly outperforms Ni, commonly accepted as a preferred dopant. Zn-doped hematite exhibits catalytic performances close to the state-of-the-art for alkaline water splitting: reaching 10 mA cm
−2
at just 350 mV overpotential (
η
) at pH 13, thus twenty times that of hematite. Such a catalytic enhancement can be traced back to a dramatic change in the reaction pathway. Incorporation of Ni, as previously suggested, decreases the energetic barrier for the OER on the available centres. In contrast, Zn facilitates the appearance of a dominant and faster alternative
via
a two-site reaction, where the four electron oxidation reaction starts on Fe, but is completed on Zn after thermodynamically favoured proton coupled electron transfer between adjacent metal centres. This unique behaviour is prompted by the non-redox character of Zn centres, which maintain the same charge during OER. Our results open an alternative role for dopants on oxide surfaces and provide a powerful approach for catalytic optimisation of oxides, including but not limited to highly preferred all-iron oxides.
The distinct beneficial effect of Zn-doping on the OER alkaline activity of Fe-based catalysts points towards an alternative and faster two-site mechanism.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34084411</pmid><doi>10.1039/c9sc05669f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7983-9762</orcidid><orcidid>https://orcid.org/0000-0002-2307-4921</orcidid><orcidid>https://orcid.org/0000-0001-5759-9980</orcidid><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2020-03, Vol.11 (9), p.2464-2471 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9SC05669F |
source | PubMed Central |
subjects | Chemistry Dopants Doping Electrolysis Electron transfer Hematite Iron oxides Optimization Oxidation Oxides Oxygen evolution reactions Water splitting Zinc |
title | Non-redox doping boosts oxygen evolution electrocatalysis on hematite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-redox%20doping%20boosts%20oxygen%20evolution%20electrocatalysis%20on%20hematite&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Nguy%C3%ABn,%20Huu%20Chuong&rft.date=2020-03-07&rft.volume=11&rft.issue=9&rft.spage=2464&rft.epage=2471&rft.pages=2464-2471&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc05669f&rft_dat=%3Cproquest_cross%3E2371110246%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-1e593804875142a5b5ef4ed056b0b77aa8896ead26f03d24678caf46d3dd873d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2371110246&rft_id=info:pmid/34084411&rfr_iscdi=true |