Loading…

Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach

The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (42), p.24239-2425
Main Authors: Quílez-Bermejo, Javier, Melle-Franco, Manuel, San-Fabián, Emilio, Morallón, Emilia, Cazorla-Amorós, Diego
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333
cites cdi_FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333
container_end_page 2425
container_issue 42
container_start_page 24239
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Quílez-Bermejo, Javier
Melle-Franco, Manuel
San-Fabián, Emilio
Morallón, Emilia
Cazorla-Amorós, Diego
description The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, the combination of both approaches is necessary to deepen the knowledge about this subject. This work presents excellent agreement between experimental results and computational models, which provides evidence of the nature of the most active sites in N-doped carbon materials. N-doped carbon materials have been experimentally obtained through double stage treatment of polyaniline in distinct atmospheres (both oxygen-containing and inert atmospheres) at different temperatures (800-1200 °C). According to temperature programmed desorption (TPD), Raman spectroscopy, N 2 -adsorption isotherms at −196 °C and X-ray photoelectron spectroscopy (XPS), this synthesis method results in the selective formation of nitrogen species, without significant changes in structural order or porosity. ORR catalytic tests evidence the highly efficient catalysis, with platinum-like performance in terms of the current density and onset potential, of N-doped carbon materials selectively containing graphitic-type nitrogen species. Computational chemistry, through DFT calculations, shows that edge-type graphitic nitrogen is more effective towards ORR catalysis than pyridinic, pyrrolic, pyridonic, oxidized and basal-type graphitic nitrogen species. The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood.
doi_str_mv 10.1039/c9ta07932g
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9TA07932G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309918069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhhdRsGgv3oWAN2E1u9v9iLdStArFQqnnZZpMtiltsiZZP_6Sv9K0K3UukxmevJPMG0VXCb1LaMbuOfNAS5alzUk0SGlO43LEitPjuarOo6FzGxqiorRgbBD9LM0nWOFIpwVa50ELpRvi10iAe_WBxCmPjkhjD835YkGUJq-xMC0KwsGujCY78GgVbF1grOmaNZFKY-w7vRczkmjlrWlQE9npIGs0bJVX6B4IaIJfbbi9Q-1hG-qganZt56HnCLStNcDXl9GZDCNw-Jcvorenx-XkOZ7Npy-T8SzmoyLxsYS0yEGiSIuSAoTmiI9WOSScr3IEKRKRV0xQKGXJOJacFiJdVSghF0UW4iK66XXD2PcOna83prPhJa5OM8pYUoXVBeq2p7g1zlmUdRv-APa7Tmi9t6OesOX4YMc0wNc9bB0_cv92Zb_kTIxm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309918069</pqid></control><display><type>article</type><title>Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach</title><source>Royal Society of Chemistry</source><creator>Quílez-Bermejo, Javier ; Melle-Franco, Manuel ; San-Fabián, Emilio ; Morallón, Emilia ; Cazorla-Amorós, Diego</creator><creatorcontrib>Quílez-Bermejo, Javier ; Melle-Franco, Manuel ; San-Fabián, Emilio ; Morallón, Emilia ; Cazorla-Amorós, Diego</creatorcontrib><description>The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, the combination of both approaches is necessary to deepen the knowledge about this subject. This work presents excellent agreement between experimental results and computational models, which provides evidence of the nature of the most active sites in N-doped carbon materials. N-doped carbon materials have been experimentally obtained through double stage treatment of polyaniline in distinct atmospheres (both oxygen-containing and inert atmospheres) at different temperatures (800-1200 °C). According to temperature programmed desorption (TPD), Raman spectroscopy, N 2 -adsorption isotherms at −196 °C and X-ray photoelectron spectroscopy (XPS), this synthesis method results in the selective formation of nitrogen species, without significant changes in structural order or porosity. ORR catalytic tests evidence the highly efficient catalysis, with platinum-like performance in terms of the current density and onset potential, of N-doped carbon materials selectively containing graphitic-type nitrogen species. Computational chemistry, through DFT calculations, shows that edge-type graphitic nitrogen is more effective towards ORR catalysis than pyridinic, pyrrolic, pyridonic, oxidized and basal-type graphitic nitrogen species. The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta07932g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atmosphere ; Carbon ; Catalysis ; Chemical reduction ; Computational chemistry ; Computer applications ; Inert atmospheres ; Materials selection ; Mathematical models ; Nitrogen ; Organic chemistry ; Oxygen ; Oxygen reduction reactions ; Photoelectron spectroscopy ; Photoelectrons ; Platinum ; Polyanilines ; Porosity ; Raman spectroscopy ; Species ; Spectroscopy ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (42), p.24239-2425</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333</citedby><cites>FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333</cites><orcidid>0000-0003-4748-8747 ; 0000-0001-7688-4840 ; 0000-0001-5745-4271 ; 0000-0003-2808-1036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Quílez-Bermejo, Javier</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><creatorcontrib>San-Fabián, Emilio</creatorcontrib><creatorcontrib>Morallón, Emilia</creatorcontrib><creatorcontrib>Cazorla-Amorós, Diego</creatorcontrib><title>Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, the combination of both approaches is necessary to deepen the knowledge about this subject. This work presents excellent agreement between experimental results and computational models, which provides evidence of the nature of the most active sites in N-doped carbon materials. N-doped carbon materials have been experimentally obtained through double stage treatment of polyaniline in distinct atmospheres (both oxygen-containing and inert atmospheres) at different temperatures (800-1200 °C). According to temperature programmed desorption (TPD), Raman spectroscopy, N 2 -adsorption isotherms at −196 °C and X-ray photoelectron spectroscopy (XPS), this synthesis method results in the selective formation of nitrogen species, without significant changes in structural order or porosity. ORR catalytic tests evidence the highly efficient catalysis, with platinum-like performance in terms of the current density and onset potential, of N-doped carbon materials selectively containing graphitic-type nitrogen species. Computational chemistry, through DFT calculations, shows that edge-type graphitic nitrogen is more effective towards ORR catalysis than pyridinic, pyrrolic, pyridonic, oxidized and basal-type graphitic nitrogen species. The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood.</description><subject>Atmosphere</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chemical reduction</subject><subject>Computational chemistry</subject><subject>Computer applications</subject><subject>Inert atmospheres</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Nitrogen</subject><subject>Organic chemistry</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Platinum</subject><subject>Polyanilines</subject><subject>Porosity</subject><subject>Raman spectroscopy</subject><subject>Species</subject><subject>Spectroscopy</subject><subject>X ray photoelectron spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhhdRsGgv3oWAN2E1u9v9iLdStArFQqnnZZpMtiltsiZZP_6Sv9K0K3UukxmevJPMG0VXCb1LaMbuOfNAS5alzUk0SGlO43LEitPjuarOo6FzGxqiorRgbBD9LM0nWOFIpwVa50ELpRvi10iAe_WBxCmPjkhjD835YkGUJq-xMC0KwsGujCY78GgVbF1grOmaNZFKY-w7vRczkmjlrWlQE9npIGs0bJVX6B4IaIJfbbi9Q-1hG-qganZt56HnCLStNcDXl9GZDCNw-Jcvorenx-XkOZ7Npy-T8SzmoyLxsYS0yEGiSIuSAoTmiI9WOSScr3IEKRKRV0xQKGXJOJacFiJdVSghF0UW4iK66XXD2PcOna83prPhJa5OM8pYUoXVBeq2p7g1zlmUdRv-APa7Tmi9t6OesOX4YMc0wNc9bB0_cv92Zb_kTIxm</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Quílez-Bermejo, Javier</creator><creator>Melle-Franco, Manuel</creator><creator>San-Fabián, Emilio</creator><creator>Morallón, Emilia</creator><creator>Cazorla-Amorós, Diego</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4748-8747</orcidid><orcidid>https://orcid.org/0000-0001-7688-4840</orcidid><orcidid>https://orcid.org/0000-0001-5745-4271</orcidid><orcidid>https://orcid.org/0000-0003-2808-1036</orcidid></search><sort><creationdate>2019</creationdate><title>Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach</title><author>Quílez-Bermejo, Javier ; Melle-Franco, Manuel ; San-Fabián, Emilio ; Morallón, Emilia ; Cazorla-Amorós, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmosphere</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chemical reduction</topic><topic>Computational chemistry</topic><topic>Computer applications</topic><topic>Inert atmospheres</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Nitrogen</topic><topic>Organic chemistry</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Platinum</topic><topic>Polyanilines</topic><topic>Porosity</topic><topic>Raman spectroscopy</topic><topic>Species</topic><topic>Spectroscopy</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quílez-Bermejo, Javier</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><creatorcontrib>San-Fabián, Emilio</creatorcontrib><creatorcontrib>Morallón, Emilia</creatorcontrib><creatorcontrib>Cazorla-Amorós, Diego</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quílez-Bermejo, Javier</au><au>Melle-Franco, Manuel</au><au>San-Fabián, Emilio</au><au>Morallón, Emilia</au><au>Cazorla-Amorós, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>42</issue><spage>24239</spage><epage>2425</epage><pages>24239-2425</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, the combination of both approaches is necessary to deepen the knowledge about this subject. This work presents excellent agreement between experimental results and computational models, which provides evidence of the nature of the most active sites in N-doped carbon materials. N-doped carbon materials have been experimentally obtained through double stage treatment of polyaniline in distinct atmospheres (both oxygen-containing and inert atmospheres) at different temperatures (800-1200 °C). According to temperature programmed desorption (TPD), Raman spectroscopy, N 2 -adsorption isotherms at −196 °C and X-ray photoelectron spectroscopy (XPS), this synthesis method results in the selective formation of nitrogen species, without significant changes in structural order or porosity. ORR catalytic tests evidence the highly efficient catalysis, with platinum-like performance in terms of the current density and onset potential, of N-doped carbon materials selectively containing graphitic-type nitrogen species. Computational chemistry, through DFT calculations, shows that edge-type graphitic nitrogen is more effective towards ORR catalysis than pyridinic, pyrrolic, pyridonic, oxidized and basal-type graphitic nitrogen species. The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta07932g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4748-8747</orcidid><orcidid>https://orcid.org/0000-0001-7688-4840</orcidid><orcidid>https://orcid.org/0000-0001-5745-4271</orcidid><orcidid>https://orcid.org/0000-0003-2808-1036</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (42), p.24239-2425
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_C9TA07932G
source Royal Society of Chemistry
subjects Atmosphere
Carbon
Catalysis
Chemical reduction
Computational chemistry
Computer applications
Inert atmospheres
Materials selection
Mathematical models
Nitrogen
Organic chemistry
Oxygen
Oxygen reduction reactions
Photoelectron spectroscopy
Photoelectrons
Platinum
Polyanilines
Porosity
Raman spectroscopy
Species
Spectroscopy
X ray photoelectron spectroscopy
title Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20understanding%20the%20active%20sites%20for%20the%20ORR%20in%20N-doped%20carbon%20materials%20through%20fine-tuning%20of%20nitrogen%20functionalities:%20an%20experimental%20and%20computational%20approach&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Qu%C3%ADlez-Bermejo,%20Javier&rft.date=2019&rft.volume=7&rft.issue=42&rft.spage=24239&rft.epage=2425&rft.pages=24239-2425&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta07932g&rft_dat=%3Cproquest_cross%3E2309918069%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2309918069&rft_id=info:pmid/&rfr_iscdi=true