Loading…
Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach
The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, t...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (42), p.24239-2425 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333 |
container_end_page | 2425 |
container_issue | 42 |
container_start_page | 24239 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Quílez-Bermejo, Javier Melle-Franco, Manuel San-Fabián, Emilio Morallón, Emilia Cazorla-Amorós, Diego |
description | The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, the combination of both approaches is necessary to deepen the knowledge about this subject. This work presents excellent agreement between experimental results and computational models, which provides evidence of the nature of the most active sites in N-doped carbon materials. N-doped carbon materials have been experimentally obtained through double stage treatment of polyaniline in distinct atmospheres (both oxygen-containing and inert atmospheres) at different temperatures (800-1200 °C). According to temperature programmed desorption (TPD), Raman spectroscopy, N
2
-adsorption isotherms at −196 °C and X-ray photoelectron spectroscopy (XPS), this synthesis method results in the selective formation of nitrogen species, without significant changes in structural order or porosity. ORR catalytic tests evidence the highly efficient catalysis, with platinum-like performance in terms of the current density and onset potential, of N-doped carbon materials selectively containing graphitic-type nitrogen species. Computational chemistry, through DFT calculations, shows that edge-type graphitic nitrogen is more effective towards ORR catalysis than pyridinic, pyrrolic, pyridonic, oxidized and basal-type graphitic nitrogen species.
The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. |
doi_str_mv | 10.1039/c9ta07932g |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9TA07932G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309918069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhhdRsGgv3oWAN2E1u9v9iLdStArFQqnnZZpMtiltsiZZP_6Sv9K0K3UukxmevJPMG0VXCb1LaMbuOfNAS5alzUk0SGlO43LEitPjuarOo6FzGxqiorRgbBD9LM0nWOFIpwVa50ELpRvi10iAe_WBxCmPjkhjD835YkGUJq-xMC0KwsGujCY78GgVbF1grOmaNZFKY-w7vRczkmjlrWlQE9npIGs0bJVX6B4IaIJfbbi9Q-1hG-qganZt56HnCLStNcDXl9GZDCNw-Jcvorenx-XkOZ7Npy-T8SzmoyLxsYS0yEGiSIuSAoTmiI9WOSScr3IEKRKRV0xQKGXJOJacFiJdVSghF0UW4iK66XXD2PcOna83prPhJa5OM8pYUoXVBeq2p7g1zlmUdRv-APa7Tmi9t6OesOX4YMc0wNc9bB0_cv92Zb_kTIxm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309918069</pqid></control><display><type>article</type><title>Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach</title><source>Royal Society of Chemistry</source><creator>Quílez-Bermejo, Javier ; Melle-Franco, Manuel ; San-Fabián, Emilio ; Morallón, Emilia ; Cazorla-Amorós, Diego</creator><creatorcontrib>Quílez-Bermejo, Javier ; Melle-Franco, Manuel ; San-Fabián, Emilio ; Morallón, Emilia ; Cazorla-Amorós, Diego</creatorcontrib><description>The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, the combination of both approaches is necessary to deepen the knowledge about this subject. This work presents excellent agreement between experimental results and computational models, which provides evidence of the nature of the most active sites in N-doped carbon materials. N-doped carbon materials have been experimentally obtained through double stage treatment of polyaniline in distinct atmospheres (both oxygen-containing and inert atmospheres) at different temperatures (800-1200 °C). According to temperature programmed desorption (TPD), Raman spectroscopy, N
2
-adsorption isotherms at −196 °C and X-ray photoelectron spectroscopy (XPS), this synthesis method results in the selective formation of nitrogen species, without significant changes in structural order or porosity. ORR catalytic tests evidence the highly efficient catalysis, with platinum-like performance in terms of the current density and onset potential, of N-doped carbon materials selectively containing graphitic-type nitrogen species. Computational chemistry, through DFT calculations, shows that edge-type graphitic nitrogen is more effective towards ORR catalysis than pyridinic, pyrrolic, pyridonic, oxidized and basal-type graphitic nitrogen species.
The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta07932g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atmosphere ; Carbon ; Catalysis ; Chemical reduction ; Computational chemistry ; Computer applications ; Inert atmospheres ; Materials selection ; Mathematical models ; Nitrogen ; Organic chemistry ; Oxygen ; Oxygen reduction reactions ; Photoelectron spectroscopy ; Photoelectrons ; Platinum ; Polyanilines ; Porosity ; Raman spectroscopy ; Species ; Spectroscopy ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (42), p.24239-2425</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333</citedby><cites>FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333</cites><orcidid>0000-0003-4748-8747 ; 0000-0001-7688-4840 ; 0000-0001-5745-4271 ; 0000-0003-2808-1036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Quílez-Bermejo, Javier</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><creatorcontrib>San-Fabián, Emilio</creatorcontrib><creatorcontrib>Morallón, Emilia</creatorcontrib><creatorcontrib>Cazorla-Amorós, Diego</creatorcontrib><title>Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, the combination of both approaches is necessary to deepen the knowledge about this subject. This work presents excellent agreement between experimental results and computational models, which provides evidence of the nature of the most active sites in N-doped carbon materials. N-doped carbon materials have been experimentally obtained through double stage treatment of polyaniline in distinct atmospheres (both oxygen-containing and inert atmospheres) at different temperatures (800-1200 °C). According to temperature programmed desorption (TPD), Raman spectroscopy, N
2
-adsorption isotherms at −196 °C and X-ray photoelectron spectroscopy (XPS), this synthesis method results in the selective formation of nitrogen species, without significant changes in structural order or porosity. ORR catalytic tests evidence the highly efficient catalysis, with platinum-like performance in terms of the current density and onset potential, of N-doped carbon materials selectively containing graphitic-type nitrogen species. Computational chemistry, through DFT calculations, shows that edge-type graphitic nitrogen is more effective towards ORR catalysis than pyridinic, pyrrolic, pyridonic, oxidized and basal-type graphitic nitrogen species.
The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood.</description><subject>Atmosphere</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chemical reduction</subject><subject>Computational chemistry</subject><subject>Computer applications</subject><subject>Inert atmospheres</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Nitrogen</subject><subject>Organic chemistry</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Platinum</subject><subject>Polyanilines</subject><subject>Porosity</subject><subject>Raman spectroscopy</subject><subject>Species</subject><subject>Spectroscopy</subject><subject>X ray photoelectron spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhhdRsGgv3oWAN2E1u9v9iLdStArFQqnnZZpMtiltsiZZP_6Sv9K0K3UukxmevJPMG0VXCb1LaMbuOfNAS5alzUk0SGlO43LEitPjuarOo6FzGxqiorRgbBD9LM0nWOFIpwVa50ELpRvi10iAe_WBxCmPjkhjD835YkGUJq-xMC0KwsGujCY78GgVbF1grOmaNZFKY-w7vRczkmjlrWlQE9npIGs0bJVX6B4IaIJfbbi9Q-1hG-qganZt56HnCLStNcDXl9GZDCNw-Jcvorenx-XkOZ7Npy-T8SzmoyLxsYS0yEGiSIuSAoTmiI9WOSScr3IEKRKRV0xQKGXJOJacFiJdVSghF0UW4iK66XXD2PcOna83prPhJa5OM8pYUoXVBeq2p7g1zlmUdRv-APa7Tmi9t6OesOX4YMc0wNc9bB0_cv92Zb_kTIxm</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Quílez-Bermejo, Javier</creator><creator>Melle-Franco, Manuel</creator><creator>San-Fabián, Emilio</creator><creator>Morallón, Emilia</creator><creator>Cazorla-Amorós, Diego</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4748-8747</orcidid><orcidid>https://orcid.org/0000-0001-7688-4840</orcidid><orcidid>https://orcid.org/0000-0001-5745-4271</orcidid><orcidid>https://orcid.org/0000-0003-2808-1036</orcidid></search><sort><creationdate>2019</creationdate><title>Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach</title><author>Quílez-Bermejo, Javier ; Melle-Franco, Manuel ; San-Fabián, Emilio ; Morallón, Emilia ; Cazorla-Amorós, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmosphere</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chemical reduction</topic><topic>Computational chemistry</topic><topic>Computer applications</topic><topic>Inert atmospheres</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Nitrogen</topic><topic>Organic chemistry</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Platinum</topic><topic>Polyanilines</topic><topic>Porosity</topic><topic>Raman spectroscopy</topic><topic>Species</topic><topic>Spectroscopy</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quílez-Bermejo, Javier</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><creatorcontrib>San-Fabián, Emilio</creatorcontrib><creatorcontrib>Morallón, Emilia</creatorcontrib><creatorcontrib>Cazorla-Amorós, Diego</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quílez-Bermejo, Javier</au><au>Melle-Franco, Manuel</au><au>San-Fabián, Emilio</au><au>Morallón, Emilia</au><au>Cazorla-Amorós, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>42</issue><spage>24239</spage><epage>2425</epage><pages>24239-2425</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, the combination of both approaches is necessary to deepen the knowledge about this subject. This work presents excellent agreement between experimental results and computational models, which provides evidence of the nature of the most active sites in N-doped carbon materials. N-doped carbon materials have been experimentally obtained through double stage treatment of polyaniline in distinct atmospheres (both oxygen-containing and inert atmospheres) at different temperatures (800-1200 °C). According to temperature programmed desorption (TPD), Raman spectroscopy, N
2
-adsorption isotherms at −196 °C and X-ray photoelectron spectroscopy (XPS), this synthesis method results in the selective formation of nitrogen species, without significant changes in structural order or porosity. ORR catalytic tests evidence the highly efficient catalysis, with platinum-like performance in terms of the current density and onset potential, of N-doped carbon materials selectively containing graphitic-type nitrogen species. Computational chemistry, through DFT calculations, shows that edge-type graphitic nitrogen is more effective towards ORR catalysis than pyridinic, pyrrolic, pyridonic, oxidized and basal-type graphitic nitrogen species.
The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta07932g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4748-8747</orcidid><orcidid>https://orcid.org/0000-0001-7688-4840</orcidid><orcidid>https://orcid.org/0000-0001-5745-4271</orcidid><orcidid>https://orcid.org/0000-0003-2808-1036</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (42), p.24239-2425 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C9TA07932G |
source | Royal Society of Chemistry |
subjects | Atmosphere Carbon Catalysis Chemical reduction Computational chemistry Computer applications Inert atmospheres Materials selection Mathematical models Nitrogen Organic chemistry Oxygen Oxygen reduction reactions Photoelectron spectroscopy Photoelectrons Platinum Polyanilines Porosity Raman spectroscopy Species Spectroscopy X ray photoelectron spectroscopy |
title | Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20understanding%20the%20active%20sites%20for%20the%20ORR%20in%20N-doped%20carbon%20materials%20through%20fine-tuning%20of%20nitrogen%20functionalities:%20an%20experimental%20and%20computational%20approach&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Qu%C3%ADlez-Bermejo,%20Javier&rft.date=2019&rft.volume=7&rft.issue=42&rft.spage=24239&rft.epage=2425&rft.pages=24239-2425&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta07932g&rft_dat=%3Cproquest_cross%3E2309918069%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-fa265afed2670aac464c4b5a1ccb5eafd1d589d0a7f79ce7c06d2b8efa5d63333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2309918069&rft_id=info:pmid/&rfr_iscdi=true |