Loading…
An antibody-based amperometric biosensor for 20S proteasome activity and inhibitor screening
The 20S proteasome enzyme complex is involved in the proteolytic degradation of misfolded and oxidatively damaged proteins and is a focus of medical research for the development of compounds with pharmaceutical properties, which are active in cancer cells and/or neurodegenerative diseases. The prese...
Saved in:
Published in: | Analyst (London) 2021-05, Vol.146 (1), p.3216-3224 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The 20S proteasome enzyme complex is involved in the proteolytic degradation of misfolded and oxidatively damaged proteins and is a focus of medical research for the development of compounds with pharmaceutical properties, which are active in cancer cells and/or neurodegenerative diseases. The present study aims to develop a biosensor for investigating the 20S proteasome activity and inhibition by means of electrochemical methods. The 20S proteasome is best immobilized at the electrode surface through bio-affinity interactions with antibodies that target different subunits on the 20S proteasome, enabling the investigation of the effect of an enzyme's orientation on biosensor response. The enzymatic activity is analyzed by fixed potential amperometry with the highest sensitivity of 24 μA cm
−2
mM
−1
and a LOD of 0.4 μM. The detection principle involves the oxidation of an electroactive probe that is released from the enzyme's substrates upon proteolysis. The most sensitive biosensor is then used to study the multicatalytic activity of the 20S proteasome,
i.e.
the caspase-, trypsin- and chymotrypsin-like activity, by analyzing the biosensor's sensitivity towards different substrates. The behavior of the immobilized 20S proteasome is investigated as a function of substrate concentration. The kinetic parameters are derived and compared with those obtained when the enzyme was free in solution, with
K
0.5
values being one to two orders of magnitude lower in the present case. Two 20S inhibitors, epoxomicin and bortezomib, are investigated by analyzing their influence on the 20S biosensor response. The proposed analytical method for proteasome activity and inhibitor screening has the main advantage of being cost-effective compared to the ones typically employed.
The 20S proteasome is immobilized through specific interactions with antibodies and its activity is evaluated by electrochemical methods. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/d0an02426k |