Loading…

Control of magnetic anisotropy by macrocyclic ligand distortion in a family of Dy III and Er III single molecule magnets

A family of hexaazamacrocyclic lanthanide complexes, [Ln(Ln)(NCS)3] (LnIII = Dy, Er; n = 1-3) has been synthesized and characterized by single-crystal X-ray diffraction, magnetic measurements and ab initio calculations. Macrocyclic ligands (Ln) differ in the lateral spacers, which are aliphatic chai...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2020-12, Vol.49 (48), p.17709-17718
Main Authors: Gil, Yolimar, Fuentealba, Pablo, Vega, Andrés, Spodine, Evgenia, Aravena, Daniel
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A family of hexaazamacrocyclic lanthanide complexes, [Ln(Ln)(NCS)3] (LnIII = Dy, Er; n = 1-3) has been synthesized and characterized by single-crystal X-ray diffraction, magnetic measurements and ab initio calculations. Macrocyclic ligands (Ln) differ in the lateral spacers, which are aliphatic chains with two and three carbons (for Ln, n = 1 and 2, respectively), and an aromatic ring for Ln = 3. Modification of the macrocycle spacer tunes planarity and rigidity of the equatorial coordination for both oblate (Dy) and prolate (Er) lanthanide ions. Ac-susceptibility studies showed that four of the six complexes are field induced single molecule magnets (SMMs). Trends in magnetic relaxation properties are rationalized with the aid of ab initio multireference calculations, highlighting the combined influence of macrocycle planarity, lanthanide electronic density distribution and intermolecular interactions for the achievement of slow demagnetization.
ISSN:1477-9226
1477-9234
DOI:10.1039/d0dt03370g