Loading…

Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts

Overall electrocatalytic water splitting can efficiently and sustainably produce clean hydrogen energy to alleviate the global energy crisis and environmental pollution. Two-dimensional (2D) materials with a unique band structure and surface conformation have emerged as promising electrocatalysts fo...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2021-01, Vol.13 (3), p.1581-1595
Main Authors: Wu, Tong, Dong, Chenlong, Sun, Du, Huang, Fuqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Overall electrocatalytic water splitting can efficiently and sustainably produce clean hydrogen energy to alleviate the global energy crisis and environmental pollution. Two-dimensional (2D) materials with a unique band structure and surface conformation have emerged as promising electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, the intrinsic activities of primitive 2D materials in the catalytic process are still inferior to those of noble metal-based electrocatalysts. Surface defect engineering can modulate the electronic structure of 2D materials and induce new physicochemical properties, promoting their electrocatalytic performance. Herein, this minireview focuses on some recent developments in surface defect engineering, including the contribution of active sites, the derivation of the heterogeneous interface, and the anchoring of active substances, which provides an effective way to further optimize 2D electrocatalysts for water splitting. Furthermore, the typical morphological characteristics, catalytic activity, stability and catalytic mechanism of these 2D electrocatalysts are introduced. We believe that this minireview will help design more efficient and economical electrocatalysts for overall water splitting. Overall electrocatalytic water splitting can efficiently and sustainably produce clean hydrogen energy to alleviate the global energy crisis and environmental pollution.
ISSN:2040-3364
2040-3372
DOI:10.1039/d0nr08009h