Loading…
Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration
Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (45), p.2393-23938 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3 |
container_end_page | 23938 |
container_issue | 45 |
container_start_page | 2393 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Li, Yafei You, Xinda Li, Ya Yuan, Jinqiu Shen, Jianliang Zhang, Runnan Wu, Hong Su, Yanlei Jiang, Zhongyi |
description | Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms
via
graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m
−2
h
−1
bar
−1
with an ultrahigh Na
2
SO
4
rejection of 99.6%, as well as an unprecedented Cl
−
/SO
4
2−
selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications.
Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration. |
doi_str_mv | 10.1039/d0ta09319j |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA09319J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464465837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3</originalsourceid><addsrcrecordid>eNpFkNFLwzAQh4MoOHQvvgsB34RquqRp8jimTmXgy3wut_SydrRJl7QP--_tnMx7uR_cd3fwEXKXsqeUcf1csh6Y5qneXZDJjGUsyYWWl-es1DWZxrhjYynGpNYTsl0G6Cp0SPcDuH5oael7im5bO8SAJR2aPkBf1Y423keknW8O0NYlUgfO27ppI7U-0KreVkmHYcwtOHMeH7dr727JlYUm4vSv35Dvt9f14j1ZfS0_FvNVYrgSfWIyLkUuwaaAhoHJM2ZLK4QogZtcSFAWTAq8tCByhkpqowxHnWm7KfMN8hvycLrbBb8fMPbFzg_BjS-LmZBCyEzxfKQeT5QJPsaAtuhC3UI4FCkrji6LF7ae_7r8HOH7ExyiOXP_rvkPfi9z7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464465837</pqid></control><display><type>article</type><title>Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Li, Yafei ; You, Xinda ; Li, Ya ; Yuan, Jinqiu ; Shen, Jianliang ; Zhang, Runnan ; Wu, Hong ; Su, Yanlei ; Jiang, Zhongyi</creator><creatorcontrib>Li, Yafei ; You, Xinda ; Li, Ya ; Yuan, Jinqiu ; Shen, Jianliang ; Zhang, Runnan ; Wu, Hong ; Su, Yanlei ; Jiang, Zhongyi</creatorcontrib><description>Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms
via
graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m
−2
h
−1
bar
−1
with an ultrahigh Na
2
SO
4
rejection of 99.6%, as well as an unprecedented Cl
−
/SO
4
2−
selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications.
Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta09319j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical interactions ; Diffusion rate ; Filtration ; Graphene ; Membranes ; Nanofiltration ; Nanotechnology ; Piperazine ; Polyamide resins ; Polyamides ; Polymerization ; Pore size ; Porosity ; Quantum dots ; Regulators ; Reluctance ; Selectivity ; Sodium sulfate ; Thickness ; Upper bounds</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (45), p.2393-23938</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3</citedby><cites>FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3</cites><orcidid>0000-0002-0048-8849 ; 0000-0001-6600-4459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Yafei</creatorcontrib><creatorcontrib>You, Xinda</creatorcontrib><creatorcontrib>Li, Ya</creatorcontrib><creatorcontrib>Yuan, Jinqiu</creatorcontrib><creatorcontrib>Shen, Jianliang</creatorcontrib><creatorcontrib>Zhang, Runnan</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><creatorcontrib>Su, Yanlei</creatorcontrib><creatorcontrib>Jiang, Zhongyi</creatorcontrib><title>Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms
via
graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m
−2
h
−1
bar
−1
with an ultrahigh Na
2
SO
4
rejection of 99.6%, as well as an unprecedented Cl
−
/SO
4
2−
selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications.
Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration.</description><subject>Chemical interactions</subject><subject>Diffusion rate</subject><subject>Filtration</subject><subject>Graphene</subject><subject>Membranes</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Piperazine</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polymerization</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Quantum dots</subject><subject>Regulators</subject><subject>Reluctance</subject><subject>Selectivity</subject><subject>Sodium sulfate</subject><subject>Thickness</subject><subject>Upper bounds</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkNFLwzAQh4MoOHQvvgsB34RquqRp8jimTmXgy3wut_SydrRJl7QP--_tnMx7uR_cd3fwEXKXsqeUcf1csh6Y5qneXZDJjGUsyYWWl-es1DWZxrhjYynGpNYTsl0G6Cp0SPcDuH5oael7im5bO8SAJR2aPkBf1Y423keknW8O0NYlUgfO27ppI7U-0KreVkmHYcwtOHMeH7dr727JlYUm4vSv35Dvt9f14j1ZfS0_FvNVYrgSfWIyLkUuwaaAhoHJM2ZLK4QogZtcSFAWTAq8tCByhkpqowxHnWm7KfMN8hvycLrbBb8fMPbFzg_BjS-LmZBCyEzxfKQeT5QJPsaAtuhC3UI4FCkrji6LF7ae_7r8HOH7ExyiOXP_rvkPfi9z7Q</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Li, Yafei</creator><creator>You, Xinda</creator><creator>Li, Ya</creator><creator>Yuan, Jinqiu</creator><creator>Shen, Jianliang</creator><creator>Zhang, Runnan</creator><creator>Wu, Hong</creator><creator>Su, Yanlei</creator><creator>Jiang, Zhongyi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0048-8849</orcidid><orcidid>https://orcid.org/0000-0001-6600-4459</orcidid></search><sort><creationdate>20200101</creationdate><title>Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration</title><author>Li, Yafei ; You, Xinda ; Li, Ya ; Yuan, Jinqiu ; Shen, Jianliang ; Zhang, Runnan ; Wu, Hong ; Su, Yanlei ; Jiang, Zhongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical interactions</topic><topic>Diffusion rate</topic><topic>Filtration</topic><topic>Graphene</topic><topic>Membranes</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Piperazine</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polymerization</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Quantum dots</topic><topic>Regulators</topic><topic>Reluctance</topic><topic>Selectivity</topic><topic>Sodium sulfate</topic><topic>Thickness</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yafei</creatorcontrib><creatorcontrib>You, Xinda</creatorcontrib><creatorcontrib>Li, Ya</creatorcontrib><creatorcontrib>Yuan, Jinqiu</creatorcontrib><creatorcontrib>Shen, Jianliang</creatorcontrib><creatorcontrib>Zhang, Runnan</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><creatorcontrib>Su, Yanlei</creatorcontrib><creatorcontrib>Jiang, Zhongyi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yafei</au><au>You, Xinda</au><au>Li, Ya</au><au>Yuan, Jinqiu</au><au>Shen, Jianliang</au><au>Zhang, Runnan</au><au>Wu, Hong</au><au>Su, Yanlei</au><au>Jiang, Zhongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>45</issue><spage>2393</spage><epage>23938</epage><pages>2393-23938</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms
via
graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m
−2
h
−1
bar
−1
with an ultrahigh Na
2
SO
4
rejection of 99.6%, as well as an unprecedented Cl
−
/SO
4
2−
selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications.
Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta09319j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0048-8849</orcidid><orcidid>https://orcid.org/0000-0001-6600-4459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (45), p.2393-23938 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0TA09319J |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Chemical interactions Diffusion rate Filtration Graphene Membranes Nanofiltration Nanotechnology Piperazine Polyamide resins Polyamides Polymerization Pore size Porosity Quantum dots Regulators Reluctance Selectivity Sodium sulfate Thickness Upper bounds |
title | Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20quantum%20dot%20engineered%20ultrathin%20loose%20polyamide%20nanofilms%20for%20high-performance%20nanofiltration&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Yafei&rft.date=2020-01-01&rft.volume=8&rft.issue=45&rft.spage=2393&rft.epage=23938&rft.pages=2393-23938&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta09319j&rft_dat=%3Cproquest_cross%3E2464465837%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2464465837&rft_id=info:pmid/&rfr_iscdi=true |