Loading…

Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration

Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (45), p.2393-23938
Main Authors: Li, Yafei, You, Xinda, Li, Ya, Yuan, Jinqiu, Shen, Jianliang, Zhang, Runnan, Wu, Hong, Su, Yanlei, Jiang, Zhongyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3
cites cdi_FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3
container_end_page 23938
container_issue 45
container_start_page 2393
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Li, Yafei
You, Xinda
Li, Ya
Yuan, Jinqiu
Shen, Jianliang
Zhang, Runnan
Wu, Hong
Su, Yanlei
Jiang, Zhongyi
description Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m −2 h −1 bar −1 with an ultrahigh Na 2 SO 4 rejection of 99.6%, as well as an unprecedented Cl − /SO 4 2− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications. Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration.
doi_str_mv 10.1039/d0ta09319j
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA09319J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464465837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3</originalsourceid><addsrcrecordid>eNpFkNFLwzAQh4MoOHQvvgsB34RquqRp8jimTmXgy3wut_SydrRJl7QP--_tnMx7uR_cd3fwEXKXsqeUcf1csh6Y5qneXZDJjGUsyYWWl-es1DWZxrhjYynGpNYTsl0G6Cp0SPcDuH5oael7im5bO8SAJR2aPkBf1Y423keknW8O0NYlUgfO27ppI7U-0KreVkmHYcwtOHMeH7dr727JlYUm4vSv35Dvt9f14j1ZfS0_FvNVYrgSfWIyLkUuwaaAhoHJM2ZLK4QogZtcSFAWTAq8tCByhkpqowxHnWm7KfMN8hvycLrbBb8fMPbFzg_BjS-LmZBCyEzxfKQeT5QJPsaAtuhC3UI4FCkrji6LF7ae_7r8HOH7ExyiOXP_rvkPfi9z7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464465837</pqid></control><display><type>article</type><title>Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Li, Yafei ; You, Xinda ; Li, Ya ; Yuan, Jinqiu ; Shen, Jianliang ; Zhang, Runnan ; Wu, Hong ; Su, Yanlei ; Jiang, Zhongyi</creator><creatorcontrib>Li, Yafei ; You, Xinda ; Li, Ya ; Yuan, Jinqiu ; Shen, Jianliang ; Zhang, Runnan ; Wu, Hong ; Su, Yanlei ; Jiang, Zhongyi</creatorcontrib><description>Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m −2 h −1 bar −1 with an ultrahigh Na 2 SO 4 rejection of 99.6%, as well as an unprecedented Cl − /SO 4 2− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications. Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta09319j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical interactions ; Diffusion rate ; Filtration ; Graphene ; Membranes ; Nanofiltration ; Nanotechnology ; Piperazine ; Polyamide resins ; Polyamides ; Polymerization ; Pore size ; Porosity ; Quantum dots ; Regulators ; Reluctance ; Selectivity ; Sodium sulfate ; Thickness ; Upper bounds</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (45), p.2393-23938</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3</citedby><cites>FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3</cites><orcidid>0000-0002-0048-8849 ; 0000-0001-6600-4459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Yafei</creatorcontrib><creatorcontrib>You, Xinda</creatorcontrib><creatorcontrib>Li, Ya</creatorcontrib><creatorcontrib>Yuan, Jinqiu</creatorcontrib><creatorcontrib>Shen, Jianliang</creatorcontrib><creatorcontrib>Zhang, Runnan</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><creatorcontrib>Su, Yanlei</creatorcontrib><creatorcontrib>Jiang, Zhongyi</creatorcontrib><title>Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m −2 h −1 bar −1 with an ultrahigh Na 2 SO 4 rejection of 99.6%, as well as an unprecedented Cl − /SO 4 2− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications. Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration.</description><subject>Chemical interactions</subject><subject>Diffusion rate</subject><subject>Filtration</subject><subject>Graphene</subject><subject>Membranes</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Piperazine</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polymerization</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Quantum dots</subject><subject>Regulators</subject><subject>Reluctance</subject><subject>Selectivity</subject><subject>Sodium sulfate</subject><subject>Thickness</subject><subject>Upper bounds</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkNFLwzAQh4MoOHQvvgsB34RquqRp8jimTmXgy3wut_SydrRJl7QP--_tnMx7uR_cd3fwEXKXsqeUcf1csh6Y5qneXZDJjGUsyYWWl-es1DWZxrhjYynGpNYTsl0G6Cp0SPcDuH5oael7im5bO8SAJR2aPkBf1Y423keknW8O0NYlUgfO27ppI7U-0KreVkmHYcwtOHMeH7dr727JlYUm4vSv35Dvt9f14j1ZfS0_FvNVYrgSfWIyLkUuwaaAhoHJM2ZLK4QogZtcSFAWTAq8tCByhkpqowxHnWm7KfMN8hvycLrbBb8fMPbFzg_BjS-LmZBCyEzxfKQeT5QJPsaAtuhC3UI4FCkrji6LF7ae_7r8HOH7ExyiOXP_rvkPfi9z7Q</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Li, Yafei</creator><creator>You, Xinda</creator><creator>Li, Ya</creator><creator>Yuan, Jinqiu</creator><creator>Shen, Jianliang</creator><creator>Zhang, Runnan</creator><creator>Wu, Hong</creator><creator>Su, Yanlei</creator><creator>Jiang, Zhongyi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0048-8849</orcidid><orcidid>https://orcid.org/0000-0001-6600-4459</orcidid></search><sort><creationdate>20200101</creationdate><title>Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration</title><author>Li, Yafei ; You, Xinda ; Li, Ya ; Yuan, Jinqiu ; Shen, Jianliang ; Zhang, Runnan ; Wu, Hong ; Su, Yanlei ; Jiang, Zhongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical interactions</topic><topic>Diffusion rate</topic><topic>Filtration</topic><topic>Graphene</topic><topic>Membranes</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Piperazine</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polymerization</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Quantum dots</topic><topic>Regulators</topic><topic>Reluctance</topic><topic>Selectivity</topic><topic>Sodium sulfate</topic><topic>Thickness</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yafei</creatorcontrib><creatorcontrib>You, Xinda</creatorcontrib><creatorcontrib>Li, Ya</creatorcontrib><creatorcontrib>Yuan, Jinqiu</creatorcontrib><creatorcontrib>Shen, Jianliang</creatorcontrib><creatorcontrib>Zhang, Runnan</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><creatorcontrib>Su, Yanlei</creatorcontrib><creatorcontrib>Jiang, Zhongyi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yafei</au><au>You, Xinda</au><au>Li, Ya</au><au>Yuan, Jinqiu</au><au>Shen, Jianliang</au><au>Zhang, Runnan</au><au>Wu, Hong</au><au>Su, Yanlei</au><au>Jiang, Zhongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>45</issue><spage>2393</spage><epage>23938</epage><pages>2393-23938</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m −2 h −1 bar −1 with an ultrahigh Na 2 SO 4 rejection of 99.6%, as well as an unprecedented Cl − /SO 4 2− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications. Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta09319j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0048-8849</orcidid><orcidid>https://orcid.org/0000-0001-6600-4459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (45), p.2393-23938
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D0TA09319J
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Chemical interactions
Diffusion rate
Filtration
Graphene
Membranes
Nanofiltration
Nanotechnology
Piperazine
Polyamide resins
Polyamides
Polymerization
Pore size
Porosity
Quantum dots
Regulators
Reluctance
Selectivity
Sodium sulfate
Thickness
Upper bounds
title Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20quantum%20dot%20engineered%20ultrathin%20loose%20polyamide%20nanofilms%20for%20high-performance%20nanofiltration&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Yafei&rft.date=2020-01-01&rft.volume=8&rft.issue=45&rft.spage=2393&rft.epage=23938&rft.pages=2393-23938&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta09319j&rft_dat=%3Cproquest_cross%3E2464465837%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-c536476af1aec0ac750fdf444da3c746a8fac1a3dfa470e869c8c3e959fbd7be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2464465837&rft_id=info:pmid/&rfr_iscdi=true