Loading…

MMP-2 sensitive poly(malic acid) micelles stabilized by π-π stacking enable high drug loading capacity

Poly(β- l -malic acid) (PMLA) together with its derivatives is an aliphatic polyester with superior bio-properties for anti-tumor drugs. In order to surmount the obstacles of low drug loading and rapid premature release during the circulation of polyester-based micelles, micelles based on poly(β-ben...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2020-09, Vol.8 (37), p.8527-8535
Main Authors: Qiao, Youbei, Zhan, Chunjing, Wang, Chaoli, Shi, Xuetao, Yang, Jingcheng, He, Xin, Ji, Erlong, Yu, Zhe, Yan, Changjiao, Wu, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-d58945d809158da0d34ae6648621605afc2f8ddfa1809338664c27045d2e78a33
cites cdi_FETCH-LOGICAL-c404t-d58945d809158da0d34ae6648621605afc2f8ddfa1809338664c27045d2e78a33
container_end_page 8535
container_issue 37
container_start_page 8527
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 8
creator Qiao, Youbei
Zhan, Chunjing
Wang, Chaoli
Shi, Xuetao
Yang, Jingcheng
He, Xin
Ji, Erlong
Yu, Zhe
Yan, Changjiao
Wu, Hong
description Poly(β- l -malic acid) (PMLA) together with its derivatives is an aliphatic polyester with superior bio-properties for anti-tumor drugs. In order to surmount the obstacles of low drug loading and rapid premature release during the circulation of polyester-based micelles, micelles based on poly(β-benzyl malate)- b -polyethylene glycol (PBM-PEG) were developed in this study. The micelles had high drug loading capacity (>20 wt%) and held robust stability, owing to the π-π stacking interactions between polymer chains, and between the polymer and drug. Computer simulation also confirmed that there was the strongest binding free energy between PBMs, and PBM and doxorubicin (DOX), compared with other polyesters. A cell-penetrating moiety (TAT) was employed, and furthermore, a protective outer shell (PEG 5k ) was also introduced via a matrix metalloproteinase-2 (MMP-2) cleavable peptide. Before reaching the tumor site, the TAT peptide was shielded by long chain PEG, and the micelles showed low bioactivity. While at the tumor tissues where MMP-2 was highly expressed, the cleavage of the linker leads to the exposure of TAT, thus enhancing the cellular internalization. The desired therapeutic consequent was also observed, with no accompanying systemic toxicity detected. Our findings indicated that this MMP-2 sensitive PBM polymeric micelle would be a promising antitumor drug carrier with enhanced therapeutic effects. Poly(β- l -malic acid) (PMLA) together with its derivatives is an aliphatic polyester with superior bio-properties for anti-tumor drugs.
doi_str_mv 10.1039/d0tb01682a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TB01682A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447251515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-d58945d809158da0d34ae6648621605afc2f8ddfa1809338664c27045d2e78a33</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0EolXpwg4yYgGkgF9JnLGUp0QFQ5HYIsd2WpekCXGCFKb-w_4lXFrKxvVwr3y-eywdA3CI0SVGNLpSqE4QDjgRO6BLkI-80Md8dzujtw7oWztDrrjjKNsHHUp4EHEcdcF0NHrxCLR6bk1tPjUsi6w9y0VmJBTSqHOYG6mzTFtoa5GYzHxpBZMWLhfecrG6k-9mPoF6LpJMw6mZTKGqmgnMCqFWghSl86nbA7CXiszq_qb3wOvd7Xj44D093z8OB0-eZIjVnvJ5xHzFUYR9rgRSlAkdBIwHBAfIF6kkKVcqFdghlHInSRIit0J0yAWlPXC69i2r4qPRto5nRVPN3ZMxYSwkPnbHURdrSlaFtZVO47IyuajaGKN4lWt8g8bXP7kOHHy8sWySXKst-puiA07WQGXlVv37mLhUqWOO_mPoN2vuh24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447251515</pqid></control><display><type>article</type><title>MMP-2 sensitive poly(malic acid) micelles stabilized by π-π stacking enable high drug loading capacity</title><source>Royal Society of Chemistry Journals</source><creator>Qiao, Youbei ; Zhan, Chunjing ; Wang, Chaoli ; Shi, Xuetao ; Yang, Jingcheng ; He, Xin ; Ji, Erlong ; Yu, Zhe ; Yan, Changjiao ; Wu, Hong</creator><creatorcontrib>Qiao, Youbei ; Zhan, Chunjing ; Wang, Chaoli ; Shi, Xuetao ; Yang, Jingcheng ; He, Xin ; Ji, Erlong ; Yu, Zhe ; Yan, Changjiao ; Wu, Hong</creatorcontrib><description>Poly(β- l -malic acid) (PMLA) together with its derivatives is an aliphatic polyester with superior bio-properties for anti-tumor drugs. In order to surmount the obstacles of low drug loading and rapid premature release during the circulation of polyester-based micelles, micelles based on poly(β-benzyl malate)- b -polyethylene glycol (PBM-PEG) were developed in this study. The micelles had high drug loading capacity (&gt;20 wt%) and held robust stability, owing to the π-π stacking interactions between polymer chains, and between the polymer and drug. Computer simulation also confirmed that there was the strongest binding free energy between PBMs, and PBM and doxorubicin (DOX), compared with other polyesters. A cell-penetrating moiety (TAT) was employed, and furthermore, a protective outer shell (PEG 5k ) was also introduced via a matrix metalloproteinase-2 (MMP-2) cleavable peptide. Before reaching the tumor site, the TAT peptide was shielded by long chain PEG, and the micelles showed low bioactivity. While at the tumor tissues where MMP-2 was highly expressed, the cleavage of the linker leads to the exposure of TAT, thus enhancing the cellular internalization. The desired therapeutic consequent was also observed, with no accompanying systemic toxicity detected. Our findings indicated that this MMP-2 sensitive PBM polymeric micelle would be a promising antitumor drug carrier with enhanced therapeutic effects. Poly(β- l -malic acid) (PMLA) together with its derivatives is an aliphatic polyester with superior bio-properties for anti-tumor drugs.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d0tb01682a</identifier><identifier>PMID: 32869819</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Anticancer properties ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - therapeutic use ; Biocompatibility ; Biological activity ; Cell Line, Tumor ; Computer simulation ; Doxorubicin ; Doxorubicin - chemistry ; Doxorubicin - therapeutic use ; Drug carriers ; Drug Carriers - chemical synthesis ; Drug Carriers - chemistry ; Drug delivery ; Drug Liberation ; Female ; Free energy ; Gelatinase A ; Humans ; Internalization ; Malate ; Matrix metalloproteinase ; Matrix metalloproteinases ; Metalloproteinase ; Mice, Inbred BALB C ; Micelles ; Neoplasms - drug therapy ; Neoplasms - pathology ; Oligopeptides - chemistry ; Peptides ; Polyester resins ; Polyesters ; Polyesters - chemical synthesis ; Polyesters - chemistry ; Polyethylene glycol ; Polyethylene Glycols - chemical synthesis ; Polyethylene Glycols - chemistry ; Polymalic acid ; Polymers ; Stacking ; Static Electricity ; Toxicity ; Xenograft Model Antitumor Assays</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2020-09, Vol.8 (37), p.8527-8535</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-d58945d809158da0d34ae6648621605afc2f8ddfa1809338664c27045d2e78a33</citedby><cites>FETCH-LOGICAL-c404t-d58945d809158da0d34ae6648621605afc2f8ddfa1809338664c27045d2e78a33</cites><orcidid>0000-0003-4781-8937 ; 0000-0002-6974-4986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32869819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Youbei</creatorcontrib><creatorcontrib>Zhan, Chunjing</creatorcontrib><creatorcontrib>Wang, Chaoli</creatorcontrib><creatorcontrib>Shi, Xuetao</creatorcontrib><creatorcontrib>Yang, Jingcheng</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Ji, Erlong</creatorcontrib><creatorcontrib>Yu, Zhe</creatorcontrib><creatorcontrib>Yan, Changjiao</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><title>MMP-2 sensitive poly(malic acid) micelles stabilized by π-π stacking enable high drug loading capacity</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Poly(β- l -malic acid) (PMLA) together with its derivatives is an aliphatic polyester with superior bio-properties for anti-tumor drugs. In order to surmount the obstacles of low drug loading and rapid premature release during the circulation of polyester-based micelles, micelles based on poly(β-benzyl malate)- b -polyethylene glycol (PBM-PEG) were developed in this study. The micelles had high drug loading capacity (&gt;20 wt%) and held robust stability, owing to the π-π stacking interactions between polymer chains, and between the polymer and drug. Computer simulation also confirmed that there was the strongest binding free energy between PBMs, and PBM and doxorubicin (DOX), compared with other polyesters. A cell-penetrating moiety (TAT) was employed, and furthermore, a protective outer shell (PEG 5k ) was also introduced via a matrix metalloproteinase-2 (MMP-2) cleavable peptide. Before reaching the tumor site, the TAT peptide was shielded by long chain PEG, and the micelles showed low bioactivity. While at the tumor tissues where MMP-2 was highly expressed, the cleavage of the linker leads to the exposure of TAT, thus enhancing the cellular internalization. The desired therapeutic consequent was also observed, with no accompanying systemic toxicity detected. Our findings indicated that this MMP-2 sensitive PBM polymeric micelle would be a promising antitumor drug carrier with enhanced therapeutic effects. Poly(β- l -malic acid) (PMLA) together with its derivatives is an aliphatic polyester with superior bio-properties for anti-tumor drugs.</description><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Cell Line, Tumor</subject><subject>Computer simulation</subject><subject>Doxorubicin</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - therapeutic use</subject><subject>Drug carriers</subject><subject>Drug Carriers - chemical synthesis</subject><subject>Drug Carriers - chemistry</subject><subject>Drug delivery</subject><subject>Drug Liberation</subject><subject>Female</subject><subject>Free energy</subject><subject>Gelatinase A</subject><subject>Humans</subject><subject>Internalization</subject><subject>Malate</subject><subject>Matrix metalloproteinase</subject><subject>Matrix metalloproteinases</subject><subject>Metalloproteinase</subject><subject>Mice, Inbred BALB C</subject><subject>Micelles</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Oligopeptides - chemistry</subject><subject>Peptides</subject><subject>Polyester resins</subject><subject>Polyesters</subject><subject>Polyesters - chemical synthesis</subject><subject>Polyesters - chemistry</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemical synthesis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymalic acid</subject><subject>Polymers</subject><subject>Stacking</subject><subject>Static Electricity</subject><subject>Toxicity</subject><subject>Xenograft Model Antitumor Assays</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kTtPwzAUhS0EolXpwg4yYgGkgF9JnLGUp0QFQ5HYIsd2WpekCXGCFKb-w_4lXFrKxvVwr3y-eywdA3CI0SVGNLpSqE4QDjgRO6BLkI-80Md8dzujtw7oWztDrrjjKNsHHUp4EHEcdcF0NHrxCLR6bk1tPjUsi6w9y0VmJBTSqHOYG6mzTFtoa5GYzHxpBZMWLhfecrG6k-9mPoF6LpJMw6mZTKGqmgnMCqFWghSl86nbA7CXiszq_qb3wOvd7Xj44D093z8OB0-eZIjVnvJ5xHzFUYR9rgRSlAkdBIwHBAfIF6kkKVcqFdghlHInSRIit0J0yAWlPXC69i2r4qPRto5nRVPN3ZMxYSwkPnbHURdrSlaFtZVO47IyuajaGKN4lWt8g8bXP7kOHHy8sWySXKst-puiA07WQGXlVv37mLhUqWOO_mPoN2vuh24</recordid><startdate>20200930</startdate><enddate>20200930</enddate><creator>Qiao, Youbei</creator><creator>Zhan, Chunjing</creator><creator>Wang, Chaoli</creator><creator>Shi, Xuetao</creator><creator>Yang, Jingcheng</creator><creator>He, Xin</creator><creator>Ji, Erlong</creator><creator>Yu, Zhe</creator><creator>Yan, Changjiao</creator><creator>Wu, Hong</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4781-8937</orcidid><orcidid>https://orcid.org/0000-0002-6974-4986</orcidid></search><sort><creationdate>20200930</creationdate><title>MMP-2 sensitive poly(malic acid) micelles stabilized by π-π stacking enable high drug loading capacity</title><author>Qiao, Youbei ; Zhan, Chunjing ; Wang, Chaoli ; Shi, Xuetao ; Yang, Jingcheng ; He, Xin ; Ji, Erlong ; Yu, Zhe ; Yan, Changjiao ; Wu, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-d58945d809158da0d34ae6648621605afc2f8ddfa1809338664c27045d2e78a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Cell Line, Tumor</topic><topic>Computer simulation</topic><topic>Doxorubicin</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - therapeutic use</topic><topic>Drug carriers</topic><topic>Drug Carriers - chemical synthesis</topic><topic>Drug Carriers - chemistry</topic><topic>Drug delivery</topic><topic>Drug Liberation</topic><topic>Female</topic><topic>Free energy</topic><topic>Gelatinase A</topic><topic>Humans</topic><topic>Internalization</topic><topic>Malate</topic><topic>Matrix metalloproteinase</topic><topic>Matrix metalloproteinases</topic><topic>Metalloproteinase</topic><topic>Mice, Inbred BALB C</topic><topic>Micelles</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Oligopeptides - chemistry</topic><topic>Peptides</topic><topic>Polyester resins</topic><topic>Polyesters</topic><topic>Polyesters - chemical synthesis</topic><topic>Polyesters - chemistry</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemical synthesis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymalic acid</topic><topic>Polymers</topic><topic>Stacking</topic><topic>Static Electricity</topic><topic>Toxicity</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Youbei</creatorcontrib><creatorcontrib>Zhan, Chunjing</creatorcontrib><creatorcontrib>Wang, Chaoli</creatorcontrib><creatorcontrib>Shi, Xuetao</creatorcontrib><creatorcontrib>Yang, Jingcheng</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Ji, Erlong</creatorcontrib><creatorcontrib>Yu, Zhe</creatorcontrib><creatorcontrib>Yan, Changjiao</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Youbei</au><au>Zhan, Chunjing</au><au>Wang, Chaoli</au><au>Shi, Xuetao</au><au>Yang, Jingcheng</au><au>He, Xin</au><au>Ji, Erlong</au><au>Yu, Zhe</au><au>Yan, Changjiao</au><au>Wu, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MMP-2 sensitive poly(malic acid) micelles stabilized by π-π stacking enable high drug loading capacity</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2020-09-30</date><risdate>2020</risdate><volume>8</volume><issue>37</issue><spage>8527</spage><epage>8535</epage><pages>8527-8535</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Poly(β- l -malic acid) (PMLA) together with its derivatives is an aliphatic polyester with superior bio-properties for anti-tumor drugs. In order to surmount the obstacles of low drug loading and rapid premature release during the circulation of polyester-based micelles, micelles based on poly(β-benzyl malate)- b -polyethylene glycol (PBM-PEG) were developed in this study. The micelles had high drug loading capacity (&gt;20 wt%) and held robust stability, owing to the π-π stacking interactions between polymer chains, and between the polymer and drug. Computer simulation also confirmed that there was the strongest binding free energy between PBMs, and PBM and doxorubicin (DOX), compared with other polyesters. A cell-penetrating moiety (TAT) was employed, and furthermore, a protective outer shell (PEG 5k ) was also introduced via a matrix metalloproteinase-2 (MMP-2) cleavable peptide. Before reaching the tumor site, the TAT peptide was shielded by long chain PEG, and the micelles showed low bioactivity. While at the tumor tissues where MMP-2 was highly expressed, the cleavage of the linker leads to the exposure of TAT, thus enhancing the cellular internalization. The desired therapeutic consequent was also observed, with no accompanying systemic toxicity detected. Our findings indicated that this MMP-2 sensitive PBM polymeric micelle would be a promising antitumor drug carrier with enhanced therapeutic effects. Poly(β- l -malic acid) (PMLA) together with its derivatives is an aliphatic polyester with superior bio-properties for anti-tumor drugs.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32869819</pmid><doi>10.1039/d0tb01682a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4781-8937</orcidid><orcidid>https://orcid.org/0000-0002-6974-4986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2020-09, Vol.8 (37), p.8527-8535
issn 2050-750X
2050-7518
language eng
recordid cdi_crossref_primary_10_1039_D0TB01682A
source Royal Society of Chemistry Journals
subjects Animals
Anticancer properties
Antineoplastic Agents - chemistry
Antineoplastic Agents - therapeutic use
Biocompatibility
Biological activity
Cell Line, Tumor
Computer simulation
Doxorubicin
Doxorubicin - chemistry
Doxorubicin - therapeutic use
Drug carriers
Drug Carriers - chemical synthesis
Drug Carriers - chemistry
Drug delivery
Drug Liberation
Female
Free energy
Gelatinase A
Humans
Internalization
Malate
Matrix metalloproteinase
Matrix metalloproteinases
Metalloproteinase
Mice, Inbred BALB C
Micelles
Neoplasms - drug therapy
Neoplasms - pathology
Oligopeptides - chemistry
Peptides
Polyester resins
Polyesters
Polyesters - chemical synthesis
Polyesters - chemistry
Polyethylene glycol
Polyethylene Glycols - chemical synthesis
Polyethylene Glycols - chemistry
Polymalic acid
Polymers
Stacking
Static Electricity
Toxicity
Xenograft Model Antitumor Assays
title MMP-2 sensitive poly(malic acid) micelles stabilized by π-π stacking enable high drug loading capacity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MMP-2%20sensitive%20poly(malic%20acid)%20micelles%20stabilized%20by%20%CF%80-%CF%80%20stacking%20enable%20high%20drug%20loading%20capacity&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Qiao,%20Youbei&rft.date=2020-09-30&rft.volume=8&rft.issue=37&rft.spage=8527&rft.epage=8535&rft.pages=8527-8535&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d0tb01682a&rft_dat=%3Cproquest_cross%3E2447251515%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-d58945d809158da0d34ae6648621605afc2f8ddfa1809338664c27045d2e78a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2447251515&rft_id=info:pmid/32869819&rfr_iscdi=true