Loading…

SAXS data modelling for the characterisation of ion tracks in polymers

Here, we present new models to fit small angle X-ray scattering (SAXS) data for the characterization of ion tracks in polymers. Ion tracks in polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI) and polymethyl methacrylate (PMMA) were created by swift heavy ion irradiation using 197...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2022-04, Vol.24 (16), p.9345-9359
Main Authors: Wang, Xue, Dutt, Shankar, Notthoff, Christian, Kiy, Alexander, Mota-Santiago, Pablo, Mudie, Stephen T, Toimil-Molares, Maria E, Liu, Feng, Wang, Yugang, Kluth, Patrick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here, we present new models to fit small angle X-ray scattering (SAXS) data for the characterization of ion tracks in polymers. Ion tracks in polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI) and polymethyl methacrylate (PMMA) were created by swift heavy ion irradiation using 197 Au and 238 U with energies between 185 MeV and 2.0 GeV. Transmission SAXS measurements were performed at the Australian Synchrotron. SAXS data were analysed using two new models that describe the tracks by a cylindrical structure composed of a highly damaged core with a gradual transition to the undamaged material. First, we investigate the 'Soft Cylinder Model', which assumes a smooth function to describe the transition region by a gradual change in density from a core to a matrix. As a simplified and computational less expensive version of the 'Soft Cylinder Model', the 'Core Transition Model' was developed to enable fast fitting. This model assumes a linear increase in density from the core to the matrix. Both models yield superior fits to the experimental SAXS data compared with the often-used simple 'Hard Cylinder Model' assuming a constant density with an abrupt transition. New SAXS fitting models reveal the detailed morphology of cylindrical ion tracks in polymers composed of a highly damaged core with a gradual transition to the undamaged material.
ISSN:1463-9076
1463-9084
1463-9084
DOI:10.1039/d1cp05813d