Loading…

Optimum in ligand density for conductivity in polymer electrolytes

Current design rules for ion conducting polymers suggest that fast segmental dynamics and high solvation site density are important for high performance. In a family of imidazole side chain grafted siloxane polymer electrolytes containing LiTFSI, we conclude that while the presence of imidazole solv...

Full description

Saved in:
Bibliographic Details
Published in:Molecular systems design & engineering 2021-11, Vol.6 (12), p.125-138
Main Authors: Schauser, Nicole S, Richardson, Peter M, Nikolaev, Andrei, Cooke, Piper, Kliegle, Gabrielle A, Susca, Ethan M, Johnson, Keith, Wang, Hengbin, Read de Alaniz, Javier, Clément, Raphaële, Segalman, Rachel A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c240t-c5fabac41fd6620aff9941250ef3cb081acac8888ed9c89a90aae743ee39ed233
container_end_page 138
container_issue 12
container_start_page 125
container_title Molecular systems design & engineering
container_volume 6
creator Schauser, Nicole S
Richardson, Peter M
Nikolaev, Andrei
Cooke, Piper
Kliegle, Gabrielle A
Susca, Ethan M
Johnson, Keith
Wang, Hengbin
Read de Alaniz, Javier
Clément, Raphaële
Segalman, Rachel A
description Current design rules for ion conducting polymers suggest that fast segmental dynamics and high solvation site density are important for high performance. In a family of imidazole side chain grafted siloxane polymer electrolytes containing LiTFSI, we conclude that while the presence of imidazole solvation sites promotes solubilization of Li + containing salts, it is not necessary to substitute every monomer in the polymer design. Rather, optimization of Li + conductivity relies on a balance between imidazole presence and the ability of the chains to rearrange locally to facilitate transport. Lowering the imidazole content in the ethane-imidazole series leads to a 10-fold increase in conductivity, while conductivity decreases for the phenyl-imidazole series due to differences in steric bulk. Normalizing conductivity by T g reveals a threshold ligand density above which increased solvation sites do not improve conductivity, but below which the conduction gradually decreases. NMR spectroscopy shows the high temperature Li + transport number increases slightly with increasing grafting density, from around 0.17 to 0.24. NMR T 1 ρ relaxation reveals that the Li + ions are present in two environments with distinct dynamics within the polymer, matching X-ray scattering and PFG results which suggest ion aggregation exists in these polymers. These results emphasize the importance of local re-arrangements in facilitating ion transport at low solvation site density, confirming the role of dynamic percolation, and suggest that an optimum ligand density exists for improved charge transport. Optimization of Li + conductivity relies on a balance between ligand presence and the ability of the chains to rearrange locally to facilitate transport.
doi_str_mv 10.1039/d1me00089f
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1ME00089F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604483106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-c5fabac41fd6620aff9941250ef3cb081acac8888ed9c89a90aae743ee39ed233</originalsourceid><addsrcrecordid>eNpN0E1LAzEQBuAgCpbai3dhwZuwOkl2Y3LU2qpQ6UXPS5pMZMt-mWSF_ntTK2oukxkeZuAl5JzCNQWubixtEQCkckdkwqCUuRJSHf_7n5JZCNtkqJCClWJC7tdDrNuxzeoua-p33dnMYhfquMtc7zPTd3Y0sf7cDxIZ-mbXos-wQRN9aiKGM3LidBNw9lOn5G25eJ0_5av14_P8bpUbVkDMTen0RpuCOisEA-2cUgVlJaDjZgOSaqONTA-tMlJpBVrjbcERuULLOJ-Sy8PewfcfI4ZYbfvRd-lkxQQUheQURFJXB2V8H4JHVw2-brXfVRSqfUzVA31ZfMe0TPjigH0wv-4vRv4FmDhlLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604483106</pqid></control><display><type>article</type><title>Optimum in ligand density for conductivity in polymer electrolytes</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Schauser, Nicole S ; Richardson, Peter M ; Nikolaev, Andrei ; Cooke, Piper ; Kliegle, Gabrielle A ; Susca, Ethan M ; Johnson, Keith ; Wang, Hengbin ; Read de Alaniz, Javier ; Clément, Raphaële ; Segalman, Rachel A</creator><creatorcontrib>Schauser, Nicole S ; Richardson, Peter M ; Nikolaev, Andrei ; Cooke, Piper ; Kliegle, Gabrielle A ; Susca, Ethan M ; Johnson, Keith ; Wang, Hengbin ; Read de Alaniz, Javier ; Clément, Raphaële ; Segalman, Rachel A</creatorcontrib><description>Current design rules for ion conducting polymers suggest that fast segmental dynamics and high solvation site density are important for high performance. In a family of imidazole side chain grafted siloxane polymer electrolytes containing LiTFSI, we conclude that while the presence of imidazole solvation sites promotes solubilization of Li + containing salts, it is not necessary to substitute every monomer in the polymer design. Rather, optimization of Li + conductivity relies on a balance between imidazole presence and the ability of the chains to rearrange locally to facilitate transport. Lowering the imidazole content in the ethane-imidazole series leads to a 10-fold increase in conductivity, while conductivity decreases for the phenyl-imidazole series due to differences in steric bulk. Normalizing conductivity by T g reveals a threshold ligand density above which increased solvation sites do not improve conductivity, but below which the conduction gradually decreases. NMR spectroscopy shows the high temperature Li + transport number increases slightly with increasing grafting density, from around 0.17 to 0.24. NMR T 1 ρ relaxation reveals that the Li + ions are present in two environments with distinct dynamics within the polymer, matching X-ray scattering and PFG results which suggest ion aggregation exists in these polymers. These results emphasize the importance of local re-arrangements in facilitating ion transport at low solvation site density, confirming the role of dynamic percolation, and suggest that an optimum ligand density exists for improved charge transport. Optimization of Li + conductivity relies on a balance between ligand presence and the ability of the chains to rearrange locally to facilitate transport.</description><identifier>ISSN: 2058-9689</identifier><identifier>EISSN: 2058-9689</identifier><identifier>DOI: 10.1039/d1me00089f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bulk density ; Charge transport ; Conducting polymers ; Design optimization ; Electrolytes ; Ethane ; High temperature ; Imidazole ; Ion transport ; Ligands ; Lithium ions ; NMR spectroscopy ; Normalizing ; Percolation ; Polymers ; Siloxanes ; Solubilization ; Solvation ; X-ray scattering</subject><ispartof>Molecular systems design &amp; engineering, 2021-11, Vol.6 (12), p.125-138</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-c5fabac41fd6620aff9941250ef3cb081acac8888ed9c89a90aae743ee39ed233</cites><orcidid>0000-0002-3611-1162 ; 0000-0002-4292-5103 ; 0000-0002-4391-3139 ; 0000-0001-5310-5410 ; 0000-0001-9731-2948 ; 0000-0002-1228-1984 ; 0000-0002-6631-2459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schauser, Nicole S</creatorcontrib><creatorcontrib>Richardson, Peter M</creatorcontrib><creatorcontrib>Nikolaev, Andrei</creatorcontrib><creatorcontrib>Cooke, Piper</creatorcontrib><creatorcontrib>Kliegle, Gabrielle A</creatorcontrib><creatorcontrib>Susca, Ethan M</creatorcontrib><creatorcontrib>Johnson, Keith</creatorcontrib><creatorcontrib>Wang, Hengbin</creatorcontrib><creatorcontrib>Read de Alaniz, Javier</creatorcontrib><creatorcontrib>Clément, Raphaële</creatorcontrib><creatorcontrib>Segalman, Rachel A</creatorcontrib><title>Optimum in ligand density for conductivity in polymer electrolytes</title><title>Molecular systems design &amp; engineering</title><description>Current design rules for ion conducting polymers suggest that fast segmental dynamics and high solvation site density are important for high performance. In a family of imidazole side chain grafted siloxane polymer electrolytes containing LiTFSI, we conclude that while the presence of imidazole solvation sites promotes solubilization of Li + containing salts, it is not necessary to substitute every monomer in the polymer design. Rather, optimization of Li + conductivity relies on a balance between imidazole presence and the ability of the chains to rearrange locally to facilitate transport. Lowering the imidazole content in the ethane-imidazole series leads to a 10-fold increase in conductivity, while conductivity decreases for the phenyl-imidazole series due to differences in steric bulk. Normalizing conductivity by T g reveals a threshold ligand density above which increased solvation sites do not improve conductivity, but below which the conduction gradually decreases. NMR spectroscopy shows the high temperature Li + transport number increases slightly with increasing grafting density, from around 0.17 to 0.24. NMR T 1 ρ relaxation reveals that the Li + ions are present in two environments with distinct dynamics within the polymer, matching X-ray scattering and PFG results which suggest ion aggregation exists in these polymers. These results emphasize the importance of local re-arrangements in facilitating ion transport at low solvation site density, confirming the role of dynamic percolation, and suggest that an optimum ligand density exists for improved charge transport. Optimization of Li + conductivity relies on a balance between ligand presence and the ability of the chains to rearrange locally to facilitate transport.</description><subject>Bulk density</subject><subject>Charge transport</subject><subject>Conducting polymers</subject><subject>Design optimization</subject><subject>Electrolytes</subject><subject>Ethane</subject><subject>High temperature</subject><subject>Imidazole</subject><subject>Ion transport</subject><subject>Ligands</subject><subject>Lithium ions</subject><subject>NMR spectroscopy</subject><subject>Normalizing</subject><subject>Percolation</subject><subject>Polymers</subject><subject>Siloxanes</subject><subject>Solubilization</subject><subject>Solvation</subject><subject>X-ray scattering</subject><issn>2058-9689</issn><issn>2058-9689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpN0E1LAzEQBuAgCpbai3dhwZuwOkl2Y3LU2qpQ6UXPS5pMZMt-mWSF_ntTK2oukxkeZuAl5JzCNQWubixtEQCkckdkwqCUuRJSHf_7n5JZCNtkqJCClWJC7tdDrNuxzeoua-p33dnMYhfquMtc7zPTd3Y0sf7cDxIZ-mbXos-wQRN9aiKGM3LidBNw9lOn5G25eJ0_5av14_P8bpUbVkDMTen0RpuCOisEA-2cUgVlJaDjZgOSaqONTA-tMlJpBVrjbcERuULLOJ-Sy8PewfcfI4ZYbfvRd-lkxQQUheQURFJXB2V8H4JHVw2-brXfVRSqfUzVA31ZfMe0TPjigH0wv-4vRv4FmDhlLQ</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Schauser, Nicole S</creator><creator>Richardson, Peter M</creator><creator>Nikolaev, Andrei</creator><creator>Cooke, Piper</creator><creator>Kliegle, Gabrielle A</creator><creator>Susca, Ethan M</creator><creator>Johnson, Keith</creator><creator>Wang, Hengbin</creator><creator>Read de Alaniz, Javier</creator><creator>Clément, Raphaële</creator><creator>Segalman, Rachel A</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3611-1162</orcidid><orcidid>https://orcid.org/0000-0002-4292-5103</orcidid><orcidid>https://orcid.org/0000-0002-4391-3139</orcidid><orcidid>https://orcid.org/0000-0001-5310-5410</orcidid><orcidid>https://orcid.org/0000-0001-9731-2948</orcidid><orcidid>https://orcid.org/0000-0002-1228-1984</orcidid><orcidid>https://orcid.org/0000-0002-6631-2459</orcidid></search><sort><creationdate>20211130</creationdate><title>Optimum in ligand density for conductivity in polymer electrolytes</title><author>Schauser, Nicole S ; Richardson, Peter M ; Nikolaev, Andrei ; Cooke, Piper ; Kliegle, Gabrielle A ; Susca, Ethan M ; Johnson, Keith ; Wang, Hengbin ; Read de Alaniz, Javier ; Clément, Raphaële ; Segalman, Rachel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-c5fabac41fd6620aff9941250ef3cb081acac8888ed9c89a90aae743ee39ed233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bulk density</topic><topic>Charge transport</topic><topic>Conducting polymers</topic><topic>Design optimization</topic><topic>Electrolytes</topic><topic>Ethane</topic><topic>High temperature</topic><topic>Imidazole</topic><topic>Ion transport</topic><topic>Ligands</topic><topic>Lithium ions</topic><topic>NMR spectroscopy</topic><topic>Normalizing</topic><topic>Percolation</topic><topic>Polymers</topic><topic>Siloxanes</topic><topic>Solubilization</topic><topic>Solvation</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schauser, Nicole S</creatorcontrib><creatorcontrib>Richardson, Peter M</creatorcontrib><creatorcontrib>Nikolaev, Andrei</creatorcontrib><creatorcontrib>Cooke, Piper</creatorcontrib><creatorcontrib>Kliegle, Gabrielle A</creatorcontrib><creatorcontrib>Susca, Ethan M</creatorcontrib><creatorcontrib>Johnson, Keith</creatorcontrib><creatorcontrib>Wang, Hengbin</creatorcontrib><creatorcontrib>Read de Alaniz, Javier</creatorcontrib><creatorcontrib>Clément, Raphaële</creatorcontrib><creatorcontrib>Segalman, Rachel A</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Molecular systems design &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schauser, Nicole S</au><au>Richardson, Peter M</au><au>Nikolaev, Andrei</au><au>Cooke, Piper</au><au>Kliegle, Gabrielle A</au><au>Susca, Ethan M</au><au>Johnson, Keith</au><au>Wang, Hengbin</au><au>Read de Alaniz, Javier</au><au>Clément, Raphaële</au><au>Segalman, Rachel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimum in ligand density for conductivity in polymer electrolytes</atitle><jtitle>Molecular systems design &amp; engineering</jtitle><date>2021-11-30</date><risdate>2021</risdate><volume>6</volume><issue>12</issue><spage>125</spage><epage>138</epage><pages>125-138</pages><issn>2058-9689</issn><eissn>2058-9689</eissn><abstract>Current design rules for ion conducting polymers suggest that fast segmental dynamics and high solvation site density are important for high performance. In a family of imidazole side chain grafted siloxane polymer electrolytes containing LiTFSI, we conclude that while the presence of imidazole solvation sites promotes solubilization of Li + containing salts, it is not necessary to substitute every monomer in the polymer design. Rather, optimization of Li + conductivity relies on a balance between imidazole presence and the ability of the chains to rearrange locally to facilitate transport. Lowering the imidazole content in the ethane-imidazole series leads to a 10-fold increase in conductivity, while conductivity decreases for the phenyl-imidazole series due to differences in steric bulk. Normalizing conductivity by T g reveals a threshold ligand density above which increased solvation sites do not improve conductivity, but below which the conduction gradually decreases. NMR spectroscopy shows the high temperature Li + transport number increases slightly with increasing grafting density, from around 0.17 to 0.24. NMR T 1 ρ relaxation reveals that the Li + ions are present in two environments with distinct dynamics within the polymer, matching X-ray scattering and PFG results which suggest ion aggregation exists in these polymers. These results emphasize the importance of local re-arrangements in facilitating ion transport at low solvation site density, confirming the role of dynamic percolation, and suggest that an optimum ligand density exists for improved charge transport. Optimization of Li + conductivity relies on a balance between ligand presence and the ability of the chains to rearrange locally to facilitate transport.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1me00089f</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3611-1162</orcidid><orcidid>https://orcid.org/0000-0002-4292-5103</orcidid><orcidid>https://orcid.org/0000-0002-4391-3139</orcidid><orcidid>https://orcid.org/0000-0001-5310-5410</orcidid><orcidid>https://orcid.org/0000-0001-9731-2948</orcidid><orcidid>https://orcid.org/0000-0002-1228-1984</orcidid><orcidid>https://orcid.org/0000-0002-6631-2459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-9689
ispartof Molecular systems design & engineering, 2021-11, Vol.6 (12), p.125-138
issn 2058-9689
2058-9689
language eng
recordid cdi_crossref_primary_10_1039_D1ME00089F
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Bulk density
Charge transport
Conducting polymers
Design optimization
Electrolytes
Ethane
High temperature
Imidazole
Ion transport
Ligands
Lithium ions
NMR spectroscopy
Normalizing
Percolation
Polymers
Siloxanes
Solubilization
Solvation
X-ray scattering
title Optimum in ligand density for conductivity in polymer electrolytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimum%20in%20ligand%20density%20for%20conductivity%20in%20polymer%20electrolytes&rft.jtitle=Molecular%20systems%20design%20&%20engineering&rft.au=Schauser,%20Nicole%20S&rft.date=2021-11-30&rft.volume=6&rft.issue=12&rft.spage=125&rft.epage=138&rft.pages=125-138&rft.issn=2058-9689&rft.eissn=2058-9689&rft_id=info:doi/10.1039/d1me00089f&rft_dat=%3Cproquest_cross%3E2604483106%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-c5fabac41fd6620aff9941250ef3cb081acac8888ed9c89a90aae743ee39ed233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604483106&rft_id=info:pmid/&rfr_iscdi=true