Loading…
Rutile TiO 2 single crystals delivering enhanced photocatalytic oxygen evolution performance
Owing to their scientific and technological importance, the development of highly efficient photocatalytic water oxidation systems with rapid photogenerated charge separation and high surface catalytic activity is highly desirable for the storage and conversion of solar energy. A promising candidate...
Saved in:
Published in: | Nanoscale 2021-05, Vol.13 (18), p.8591-8599 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Owing to their scientific and technological importance, the development of highly efficient photocatalytic water oxidation systems with rapid photogenerated charge separation and high surface catalytic activity is highly desirable for the storage and conversion of solar energy. A promising candidate is rutile phase titanium dioxide (TiO2), which has been widely studied over half a century. Specifically, oriented single-crystalline TiO2 surfaces with high oxidative reactivity would be most desirable, but achieving these structures has been limited by the availability of synthetic techniques. In this study, a facile and green synthetic approach was developed for the first time to synthesize rutile TiO2 single crystals with regulable reductive and oxidative facets. Glycolic acid (GA) and sodium fluoride (NaF) are used as the crucial and effective phase and facet controlling agents, respectively. The selective adsorption of F- ions on the facets of rutile TiO2 crystals not only plays a key role in driving the nucleation and preferential growth of the crystals with desired facets but also significantly affects their photocatalytic gas evolution reactivity. With heat treatment, the highly stable F--free rutile TiO2 single crystals with a high percentage of oxidative facets exhibit a superior photocatalytic gas evolution rate (≈116 μmol h-1 per 0.005 g catalyst), 8.5 times higher than that of previous F--containing samples. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/D1NR01544C |