Loading…

Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction

Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with t...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2021-06, Vol.13 (24), p.1916-1924
Main Authors: Qiu, Hua-Jun, Johnson, Isaac, Chen, Luyang, Cong, Weitao, Ito, Yoshikazu, Liu, Pan, Han, Jiuhui, Fujita, Takeshi, Hirata, Akihiko, Chen, Mingwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53
cites cdi_FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53
container_end_page 1924
container_issue 24
container_start_page 1916
container_title Nanoscale
container_volume 13
creator Qiu, Hua-Jun
Johnson, Isaac
Chen, Luyang
Cong, Weitao
Ito, Yoshikazu
Liu, Pan
Han, Jiuhui
Fujita, Takeshi
Hirata, Akihiko
Chen, Mingwei
description Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with the formation of OER-active oxides/hydroxides are known to have high catalytic activity towards OERs but suffer from poor electrical conductivity and electrochemical stability in harsh oxidation environments. Here we report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. As a free-standing catalytic anode, the non-oxide transition metal catalyst shows a low OER overpotential, high OER current density and long cycling lifetime in alkaline solutions, benefiting from the high electrical conductivity and low impedance resistance for charge transfer and transport. This study may pave a new way to develop high efficiency transition metal OER catalysts for a wide range of applications in renewable energy. We report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture.
doi_str_mv 10.1039/d1nr02074a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1NR02074A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541324990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53</originalsourceid><addsrcrecordid>eNpd0c1LwzAUAPAgCs7pxbtQ8CJCNR_9ynFMncJQEHcuafKinV1Sk1atf72Zkwm-Q_IIP8L7QOiY4AuCGb9UxDhMcZ6IHTSiOMExYznd3eZZso8OvF9inHGWsRFazJxoX8BALK3oQEVGGNtaZ3sfmVq-QhN19kM45SMRraATTSxFOIevYO3n8Awmgnfb9F1tTeRAyHVyiPa0aDwc_d5jtLi5fprexvOH2d10Mo8lK3AX00KlpGA6yXKSFFQoxXhOiM6lTkmVg1JKSM1phZmqwhMlkqZaVoRzrUClbIzONv-2zr714LtyVXsJTSMMhA5KmiaE0YRzHOjpP7q0vTOhurUKUaQFD-p8o6Sz3jvQZevqlXBDSXC5nnB5Re4ffyY8Cfhkg52XW_e3AfYNCR95IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544448589</pqid></control><display><type>article</type><title>Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Qiu, Hua-Jun ; Johnson, Isaac ; Chen, Luyang ; Cong, Weitao ; Ito, Yoshikazu ; Liu, Pan ; Han, Jiuhui ; Fujita, Takeshi ; Hirata, Akihiko ; Chen, Mingwei</creator><creatorcontrib>Qiu, Hua-Jun ; Johnson, Isaac ; Chen, Luyang ; Cong, Weitao ; Ito, Yoshikazu ; Liu, Pan ; Han, Jiuhui ; Fujita, Takeshi ; Hirata, Akihiko ; Chen, Mingwei</creatorcontrib><description>Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with the formation of OER-active oxides/hydroxides are known to have high catalytic activity towards OERs but suffer from poor electrical conductivity and electrochemical stability in harsh oxidation environments. Here we report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. As a free-standing catalytic anode, the non-oxide transition metal catalyst shows a low OER overpotential, high OER current density and long cycling lifetime in alkaline solutions, benefiting from the high electrical conductivity and low impedance resistance for charge transfer and transport. This study may pave a new way to develop high efficiency transition metal OER catalysts for a wide range of applications in renewable energy. We report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr02074a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Catalytic activity ; Charge transfer ; Electrical resistivity ; Electrocatalysts ; Graphene ; Hydroxides ; Nickel ; Oxidation ; Oxygen evolution reactions ; Rechargeable batteries ; Transition metal alloys ; Transition metals ; Water splitting</subject><ispartof>Nanoscale, 2021-06, Vol.13 (24), p.1916-1924</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53</citedby><cites>FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53</cites><orcidid>0000-0002-4063-9605 ; 0000-0003-0396-1942 ; 0000-0002-7932-3181 ; 0000-0002-8274-3099 ; 0000-0001-8059-8396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qiu, Hua-Jun</creatorcontrib><creatorcontrib>Johnson, Isaac</creatorcontrib><creatorcontrib>Chen, Luyang</creatorcontrib><creatorcontrib>Cong, Weitao</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Han, Jiuhui</creatorcontrib><creatorcontrib>Fujita, Takeshi</creatorcontrib><creatorcontrib>Hirata, Akihiko</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><title>Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction</title><title>Nanoscale</title><description>Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with the formation of OER-active oxides/hydroxides are known to have high catalytic activity towards OERs but suffer from poor electrical conductivity and electrochemical stability in harsh oxidation environments. Here we report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. As a free-standing catalytic anode, the non-oxide transition metal catalyst shows a low OER overpotential, high OER current density and long cycling lifetime in alkaline solutions, benefiting from the high electrical conductivity and low impedance resistance for charge transfer and transport. This study may pave a new way to develop high efficiency transition metal OER catalysts for a wide range of applications in renewable energy. We report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Charge transfer</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Graphene</subject><subject>Hydroxides</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Rechargeable batteries</subject><subject>Transition metal alloys</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAUAPAgCs7pxbtQ8CJCNR_9ynFMncJQEHcuafKinV1Sk1atf72Zkwm-Q_IIP8L7QOiY4AuCGb9UxDhMcZ6IHTSiOMExYznd3eZZso8OvF9inHGWsRFazJxoX8BALK3oQEVGGNtaZ3sfmVq-QhN19kM45SMRraATTSxFOIevYO3n8Awmgnfb9F1tTeRAyHVyiPa0aDwc_d5jtLi5fprexvOH2d10Mo8lK3AX00KlpGA6yXKSFFQoxXhOiM6lTkmVg1JKSM1phZmqwhMlkqZaVoRzrUClbIzONv-2zr714LtyVXsJTSMMhA5KmiaE0YRzHOjpP7q0vTOhurUKUaQFD-p8o6Sz3jvQZevqlXBDSXC5nnB5Re4ffyY8Cfhkg52XW_e3AfYNCR95IQ</recordid><startdate>20210624</startdate><enddate>20210624</enddate><creator>Qiu, Hua-Jun</creator><creator>Johnson, Isaac</creator><creator>Chen, Luyang</creator><creator>Cong, Weitao</creator><creator>Ito, Yoshikazu</creator><creator>Liu, Pan</creator><creator>Han, Jiuhui</creator><creator>Fujita, Takeshi</creator><creator>Hirata, Akihiko</creator><creator>Chen, Mingwei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4063-9605</orcidid><orcidid>https://orcid.org/0000-0003-0396-1942</orcidid><orcidid>https://orcid.org/0000-0002-7932-3181</orcidid><orcidid>https://orcid.org/0000-0002-8274-3099</orcidid><orcidid>https://orcid.org/0000-0001-8059-8396</orcidid></search><sort><creationdate>20210624</creationdate><title>Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction</title><author>Qiu, Hua-Jun ; Johnson, Isaac ; Chen, Luyang ; Cong, Weitao ; Ito, Yoshikazu ; Liu, Pan ; Han, Jiuhui ; Fujita, Takeshi ; Hirata, Akihiko ; Chen, Mingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Charge transfer</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Graphene</topic><topic>Hydroxides</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Rechargeable batteries</topic><topic>Transition metal alloys</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Hua-Jun</creatorcontrib><creatorcontrib>Johnson, Isaac</creatorcontrib><creatorcontrib>Chen, Luyang</creatorcontrib><creatorcontrib>Cong, Weitao</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Han, Jiuhui</creatorcontrib><creatorcontrib>Fujita, Takeshi</creatorcontrib><creatorcontrib>Hirata, Akihiko</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Hua-Jun</au><au>Johnson, Isaac</au><au>Chen, Luyang</au><au>Cong, Weitao</au><au>Ito, Yoshikazu</au><au>Liu, Pan</au><au>Han, Jiuhui</au><au>Fujita, Takeshi</au><au>Hirata, Akihiko</au><au>Chen, Mingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction</atitle><jtitle>Nanoscale</jtitle><date>2021-06-24</date><risdate>2021</risdate><volume>13</volume><issue>24</issue><spage>1916</spage><epage>1924</epage><pages>1916-1924</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with the formation of OER-active oxides/hydroxides are known to have high catalytic activity towards OERs but suffer from poor electrical conductivity and electrochemical stability in harsh oxidation environments. Here we report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. As a free-standing catalytic anode, the non-oxide transition metal catalyst shows a low OER overpotential, high OER current density and long cycling lifetime in alkaline solutions, benefiting from the high electrical conductivity and low impedance resistance for charge transfer and transport. This study may pave a new way to develop high efficiency transition metal OER catalysts for a wide range of applications in renewable energy. We report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr02074a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4063-9605</orcidid><orcidid>https://orcid.org/0000-0003-0396-1942</orcidid><orcidid>https://orcid.org/0000-0002-7932-3181</orcidid><orcidid>https://orcid.org/0000-0002-8274-3099</orcidid><orcidid>https://orcid.org/0000-0001-8059-8396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-06, Vol.13 (24), p.1916-1924
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_D1NR02074A
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Catalysts
Catalytic activity
Charge transfer
Electrical resistivity
Electrocatalysts
Graphene
Hydroxides
Nickel
Oxidation
Oxygen evolution reactions
Rechargeable batteries
Transition metal alloys
Transition metals
Water splitting
title Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene-coated%20nanoporous%20nickel%20towards%20a%20metal-catalyzed%20oxygen%20evolution%20reaction&rft.jtitle=Nanoscale&rft.au=Qiu,%20Hua-Jun&rft.date=2021-06-24&rft.volume=13&rft.issue=24&rft.spage=1916&rft.epage=1924&rft.pages=1916-1924&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr02074a&rft_dat=%3Cproquest_cross%3E2541324990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544448589&rft_id=info:pmid/&rfr_iscdi=true