Loading…
Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction
Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with t...
Saved in:
Published in: | Nanoscale 2021-06, Vol.13 (24), p.1916-1924 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53 |
container_end_page | 1924 |
container_issue | 24 |
container_start_page | 1916 |
container_title | Nanoscale |
container_volume | 13 |
creator | Qiu, Hua-Jun Johnson, Isaac Chen, Luyang Cong, Weitao Ito, Yoshikazu Liu, Pan Han, Jiuhui Fujita, Takeshi Hirata, Akihiko Chen, Mingwei |
description | Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with the formation of OER-active oxides/hydroxides are known to have high catalytic activity towards OERs but suffer from poor electrical conductivity and electrochemical stability in harsh oxidation environments. Here we report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. As a free-standing catalytic anode, the non-oxide transition metal catalyst shows a low OER overpotential, high OER current density and long cycling lifetime in alkaline solutions, benefiting from the high electrical conductivity and low impedance resistance for charge transfer and transport. This study may pave a new way to develop high efficiency transition metal OER catalysts for a wide range of applications in renewable energy.
We report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. |
doi_str_mv | 10.1039/d1nr02074a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1NR02074A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541324990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53</originalsourceid><addsrcrecordid>eNpd0c1LwzAUAPAgCs7pxbtQ8CJCNR_9ynFMncJQEHcuafKinV1Sk1atf72Zkwm-Q_IIP8L7QOiY4AuCGb9UxDhMcZ6IHTSiOMExYznd3eZZso8OvF9inHGWsRFazJxoX8BALK3oQEVGGNtaZ3sfmVq-QhN19kM45SMRraATTSxFOIevYO3n8Awmgnfb9F1tTeRAyHVyiPa0aDwc_d5jtLi5fprexvOH2d10Mo8lK3AX00KlpGA6yXKSFFQoxXhOiM6lTkmVg1JKSM1phZmqwhMlkqZaVoRzrUClbIzONv-2zr714LtyVXsJTSMMhA5KmiaE0YRzHOjpP7q0vTOhurUKUaQFD-p8o6Sz3jvQZevqlXBDSXC5nnB5Re4ffyY8Cfhkg52XW_e3AfYNCR95IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544448589</pqid></control><display><type>article</type><title>Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Qiu, Hua-Jun ; Johnson, Isaac ; Chen, Luyang ; Cong, Weitao ; Ito, Yoshikazu ; Liu, Pan ; Han, Jiuhui ; Fujita, Takeshi ; Hirata, Akihiko ; Chen, Mingwei</creator><creatorcontrib>Qiu, Hua-Jun ; Johnson, Isaac ; Chen, Luyang ; Cong, Weitao ; Ito, Yoshikazu ; Liu, Pan ; Han, Jiuhui ; Fujita, Takeshi ; Hirata, Akihiko ; Chen, Mingwei</creatorcontrib><description>Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with the formation of OER-active oxides/hydroxides are known to have high catalytic activity towards OERs but suffer from poor electrical conductivity and electrochemical stability in harsh oxidation environments. Here we report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. As a free-standing catalytic anode, the non-oxide transition metal catalyst shows a low OER overpotential, high OER current density and long cycling lifetime in alkaline solutions, benefiting from the high electrical conductivity and low impedance resistance for charge transfer and transport. This study may pave a new way to develop high efficiency transition metal OER catalysts for a wide range of applications in renewable energy.
We report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr02074a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Catalytic activity ; Charge transfer ; Electrical resistivity ; Electrocatalysts ; Graphene ; Hydroxides ; Nickel ; Oxidation ; Oxygen evolution reactions ; Rechargeable batteries ; Transition metal alloys ; Transition metals ; Water splitting</subject><ispartof>Nanoscale, 2021-06, Vol.13 (24), p.1916-1924</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53</citedby><cites>FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53</cites><orcidid>0000-0002-4063-9605 ; 0000-0003-0396-1942 ; 0000-0002-7932-3181 ; 0000-0002-8274-3099 ; 0000-0001-8059-8396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qiu, Hua-Jun</creatorcontrib><creatorcontrib>Johnson, Isaac</creatorcontrib><creatorcontrib>Chen, Luyang</creatorcontrib><creatorcontrib>Cong, Weitao</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Han, Jiuhui</creatorcontrib><creatorcontrib>Fujita, Takeshi</creatorcontrib><creatorcontrib>Hirata, Akihiko</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><title>Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction</title><title>Nanoscale</title><description>Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with the formation of OER-active oxides/hydroxides are known to have high catalytic activity towards OERs but suffer from poor electrical conductivity and electrochemical stability in harsh oxidation environments. Here we report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. As a free-standing catalytic anode, the non-oxide transition metal catalyst shows a low OER overpotential, high OER current density and long cycling lifetime in alkaline solutions, benefiting from the high electrical conductivity and low impedance resistance for charge transfer and transport. This study may pave a new way to develop high efficiency transition metal OER catalysts for a wide range of applications in renewable energy.
We report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Charge transfer</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Graphene</subject><subject>Hydroxides</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Rechargeable batteries</subject><subject>Transition metal alloys</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAUAPAgCs7pxbtQ8CJCNR_9ynFMncJQEHcuafKinV1Sk1atf72Zkwm-Q_IIP8L7QOiY4AuCGb9UxDhMcZ6IHTSiOMExYznd3eZZso8OvF9inHGWsRFazJxoX8BALK3oQEVGGNtaZ3sfmVq-QhN19kM45SMRraATTSxFOIevYO3n8Awmgnfb9F1tTeRAyHVyiPa0aDwc_d5jtLi5fprexvOH2d10Mo8lK3AX00KlpGA6yXKSFFQoxXhOiM6lTkmVg1JKSM1phZmqwhMlkqZaVoRzrUClbIzONv-2zr714LtyVXsJTSMMhA5KmiaE0YRzHOjpP7q0vTOhurUKUaQFD-p8o6Sz3jvQZevqlXBDSXC5nnB5Re4ffyY8Cfhkg52XW_e3AfYNCR95IQ</recordid><startdate>20210624</startdate><enddate>20210624</enddate><creator>Qiu, Hua-Jun</creator><creator>Johnson, Isaac</creator><creator>Chen, Luyang</creator><creator>Cong, Weitao</creator><creator>Ito, Yoshikazu</creator><creator>Liu, Pan</creator><creator>Han, Jiuhui</creator><creator>Fujita, Takeshi</creator><creator>Hirata, Akihiko</creator><creator>Chen, Mingwei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4063-9605</orcidid><orcidid>https://orcid.org/0000-0003-0396-1942</orcidid><orcidid>https://orcid.org/0000-0002-7932-3181</orcidid><orcidid>https://orcid.org/0000-0002-8274-3099</orcidid><orcidid>https://orcid.org/0000-0001-8059-8396</orcidid></search><sort><creationdate>20210624</creationdate><title>Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction</title><author>Qiu, Hua-Jun ; Johnson, Isaac ; Chen, Luyang ; Cong, Weitao ; Ito, Yoshikazu ; Liu, Pan ; Han, Jiuhui ; Fujita, Takeshi ; Hirata, Akihiko ; Chen, Mingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Charge transfer</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Graphene</topic><topic>Hydroxides</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Rechargeable batteries</topic><topic>Transition metal alloys</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Hua-Jun</creatorcontrib><creatorcontrib>Johnson, Isaac</creatorcontrib><creatorcontrib>Chen, Luyang</creatorcontrib><creatorcontrib>Cong, Weitao</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Han, Jiuhui</creatorcontrib><creatorcontrib>Fujita, Takeshi</creatorcontrib><creatorcontrib>Hirata, Akihiko</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Hua-Jun</au><au>Johnson, Isaac</au><au>Chen, Luyang</au><au>Cong, Weitao</au><au>Ito, Yoshikazu</au><au>Liu, Pan</au><au>Han, Jiuhui</au><au>Fujita, Takeshi</au><au>Hirata, Akihiko</au><au>Chen, Mingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction</atitle><jtitle>Nanoscale</jtitle><date>2021-06-24</date><risdate>2021</risdate><volume>13</volume><issue>24</issue><spage>1916</spage><epage>1924</epage><pages>1916-1924</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with the formation of OER-active oxides/hydroxides are known to have high catalytic activity towards OERs but suffer from poor electrical conductivity and electrochemical stability in harsh oxidation environments. Here we report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. As a free-standing catalytic anode, the non-oxide transition metal catalyst shows a low OER overpotential, high OER current density and long cycling lifetime in alkaline solutions, benefiting from the high electrical conductivity and low impedance resistance for charge transfer and transport. This study may pave a new way to develop high efficiency transition metal OER catalysts for a wide range of applications in renewable energy.
We report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr02074a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4063-9605</orcidid><orcidid>https://orcid.org/0000-0003-0396-1942</orcidid><orcidid>https://orcid.org/0000-0002-7932-3181</orcidid><orcidid>https://orcid.org/0000-0002-8274-3099</orcidid><orcidid>https://orcid.org/0000-0001-8059-8396</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-06, Vol.13 (24), p.1916-1924 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1NR02074A |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Catalysts Catalytic activity Charge transfer Electrical resistivity Electrocatalysts Graphene Hydroxides Nickel Oxidation Oxygen evolution reactions Rechargeable batteries Transition metal alloys Transition metals Water splitting |
title | Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene-coated%20nanoporous%20nickel%20towards%20a%20metal-catalyzed%20oxygen%20evolution%20reaction&rft.jtitle=Nanoscale&rft.au=Qiu,%20Hua-Jun&rft.date=2021-06-24&rft.volume=13&rft.issue=24&rft.spage=1916&rft.epage=1924&rft.pages=1916-1924&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr02074a&rft_dat=%3Cproquest_cross%3E2541324990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-28d5183f4671482add39711f7cf51b7edddacf92b03dbf5121c25fcb199fded53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544448589&rft_id=info:pmid/&rfr_iscdi=true |