Loading…

Effect of applied voltage on membrane fouling in the amplifying anaerobic electrochemical membrane bioreactor for long-term operation

A novel and amplifying anaerobic electrochemical membrane bioreactor (AnEMBR, R2) was constructed and operated for a long time (204 days) with synthetic glucose solution having an average chemical oxygen demand (COD) of 315 mg L −1 , at different applied voltages and room temperatures. More than twi...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2021-09, Vol.11 (5), p.31364-31372
Main Authors: Cao, Mengjing, Zhang, Yongxiang, Zhang, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel and amplifying anaerobic electrochemical membrane bioreactor (AnEMBR, R2) was constructed and operated for a long time (204 days) with synthetic glucose solution having an average chemical oxygen demand (COD) of 315 mg L −1 , at different applied voltages and room temperatures. More than twice sodium bicarbonate was added for maintaining a pH of around 6.7 in the supernatant of the reactor R2, close to that of a control reactor called anaerobic membrane bioreactor (AnMBR, R1), after 138 days. And the transmembrane pressure (TMP) for the R2 system was only 0.534 bar at the end of operation and 0.615 bar for the R1 system. Although the electrostatic repulsion force contributed to pushing away the pollutants (proteins, polysaccharose and inorganic salt deposits, and so on), more microorganisms adsorbed and accumulated on the membrane surface after the whole operation, which might result in a rapid increase in membrane filtration resistance in the long-term operation. There were much more exoelectrogenic bacteria, mainly Betaproteobacteria, Deltaproteobacteria and Grammaproteobacteria, on the cathode and the dominant methanogen Methanothrix content on the cathode was three times higher than the AnMBR. The study provides an important theoretical foundation for the application of AnEMBR technology in the treatment of low organic strength wastewater. A novel and amplifying anaerobic electrochemical membrane bioreactor was constructed and operated for a long time (204 days) with synthetic glucose solution having an average chemical oxygen demand (COD) of 315 mg L −1 , at different applied voltages and room temperatures.
ISSN:2046-2069
2046-2069
DOI:10.1039/d1ra05500c