Loading…
SERS microsensors for pH measurements in the lumen and ECM of stem cell derived human airway organoids
Patient derived organoids have the potential to improve the physiological relevance of in vitro disease models. However, the 3D architecture of these self-assembled cellular structures makes probing their biochemistry more complex than in traditional 2D culture. We explore the application of surface...
Saved in:
Published in: | Chemical communications (Cambridge, England) England), 2023-03, Vol.59 (22), p.3249-3252 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Patient derived organoids have the potential to improve the physiological relevance of
in vitro
disease models. However, the 3D architecture of these self-assembled cellular structures makes probing their biochemistry more complex than in traditional 2D culture. We explore the application of surface enhanced Raman scattering microsensors (SERS-MS) to probe local pH gradients within patient derived airway organoid cultures. SERS-MS consist of solid polymer cores decorated with surface immobilised gold nanoparticles which are functionalised with pH sensitive reporter molecule 4-mercaptobenzoic acid (MBA). We demonstrate that by mixing SERS-MS into the extracellular matrix (ECM) of airway organoid cultures the probes can be engulfed by expanding organoids and report on local pH in the organoid lumen and ECM.
SERS microsensors (SERS-MS) are polymer microparticles coated in gold nanoparticles and functionalised with mercaptobenzoic acid. SERS-MS were incorporated into human airway organoids to measured pH optically. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/d2cc06582g |