Loading…
Extraction of chemical structures from literature and patent documents using open access chemistry toolkits: a case study with PFAS
The extraction of chemical information from documents is a demanding task in cheminformatics due to the variety of text and image-based representations of chemistry. The present work describes the extraction of chemical compounds with unique chemical structures from the open access CORE (COnnecting...
Saved in:
Published in: | Digital discovery 2022-08, Vol.1 (4), p.490-501 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c289t-884e3b83d307a4aae479e3e1f19834c74afd8dde02553c57717bf431138eb8973 |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-884e3b83d307a4aae479e3e1f19834c74afd8dde02553c57717bf431138eb8973 |
container_end_page | 501 |
container_issue | 4 |
container_start_page | 490 |
container_title | Digital discovery |
container_volume | 1 |
creator | Barnabas, Shadrack J. Böhme, Timo Boyer, Stephen K. Irmer, Matthias Ruttkies, Christoph Wetherbee, Ian Kondić, Todor Schymanski, Emma L. Weber, Lutz |
description | The extraction of chemical information from documents is a demanding task in cheminformatics due to the variety of text and image-based representations of chemistry. The present work describes the extraction of chemical compounds with unique chemical structures from the open access CORE (COnnecting REpositories) and Google Patents full text document repositories. The importance of structure normalization is demonstrated using three open access cheminformatics toolkits: the Chemistry Development Kit (CDK), RDKit and OpenChemLib (OCL). Each toolkit was used for structure parsing, normalization and subsequent substructure searching, using SMILES as structure representations of chemical molecules and International Chemical Identifiers (InChIs) for comparison. Per- and polyfluoroalkyl substances (PFAS) were chosen as a case study to perform the substructure search, due to their high environmental relevance, their presence in both literature and patent corpuses, and the current lack of community consensus on their definition. Three different structural definitions of PFAS were chosen to highlight the implications of various definitions from a cheminformatics perspective. Since CDK, RDKit and OCL implement different criteria and methods for SMILES parsing and normalization, different numbers of parsed compounds were extracted, which were then evaluated using the three PFAS definitions. A comparison of these toolkits and definitions is provided, along with a discussion of the implications for PFAS screening and text mining efforts in cheminformatics. Finally, the extracted PFAS (∼1.7 M PFAS from patents and ∼27 K from CORE) were compared against various existing PFAS lists and are provided in various formats for further community research efforts. |
doi_str_mv | 10.1039/D2DD00019A |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2DD00019A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D2DD00019A</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-884e3b83d307a4aae479e3e1f19834c74afd8dde02553c57717bf431138eb8973</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWLQXf8F7FlaTzW6TeCv9UKGgoIK3Jc2-sdHdTUmyaM_-cbdU0NMMw_DADCEXjF4xytX1PJ_PKaVMTY_IKJ_wMqNKvh7_86dkHOP70MmFYIxPRuR78ZWCNsn5DrwFs8HWGd1ATKE3qQ8YwQbfQuMSBr0PQHc1bHXCLkHtTd8OJkIfXfcGfosdaGMwxgNqwOwged98uBRvQIPREQd4X-_g06UNPC6nT-fkxOom4vhXz8jLcvE8u8tWD7f3s-kqM7lUKZOyQL6WvOZU6EJrLIRCjswyJXlhRKFtLesaaV6W3JTDQrG2BR92SlxLJfgZuTxwTfAxBrTVNrhWh13FaLV_sPp7kP8AiSplxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extraction of chemical structures from literature and patent documents using open access chemistry toolkits: a case study with PFAS</title><source>Alma/SFX Local Collection</source><creator>Barnabas, Shadrack J. ; Böhme, Timo ; Boyer, Stephen K. ; Irmer, Matthias ; Ruttkies, Christoph ; Wetherbee, Ian ; Kondić, Todor ; Schymanski, Emma L. ; Weber, Lutz</creator><creatorcontrib>Barnabas, Shadrack J. ; Böhme, Timo ; Boyer, Stephen K. ; Irmer, Matthias ; Ruttkies, Christoph ; Wetherbee, Ian ; Kondić, Todor ; Schymanski, Emma L. ; Weber, Lutz</creatorcontrib><description>The extraction of chemical information from documents is a demanding task in cheminformatics due to the variety of text and image-based representations of chemistry. The present work describes the extraction of chemical compounds with unique chemical structures from the open access CORE (COnnecting REpositories) and Google Patents full text document repositories. The importance of structure normalization is demonstrated using three open access cheminformatics toolkits: the Chemistry Development Kit (CDK), RDKit and OpenChemLib (OCL). Each toolkit was used for structure parsing, normalization and subsequent substructure searching, using SMILES as structure representations of chemical molecules and International Chemical Identifiers (InChIs) for comparison. Per- and polyfluoroalkyl substances (PFAS) were chosen as a case study to perform the substructure search, due to their high environmental relevance, their presence in both literature and patent corpuses, and the current lack of community consensus on their definition. Three different structural definitions of PFAS were chosen to highlight the implications of various definitions from a cheminformatics perspective. Since CDK, RDKit and OCL implement different criteria and methods for SMILES parsing and normalization, different numbers of parsed compounds were extracted, which were then evaluated using the three PFAS definitions. A comparison of these toolkits and definitions is provided, along with a discussion of the implications for PFAS screening and text mining efforts in cheminformatics. Finally, the extracted PFAS (∼1.7 M PFAS from patents and ∼27 K from CORE) were compared against various existing PFAS lists and are provided in various formats for further community research efforts.</description><identifier>ISSN: 2635-098X</identifier><identifier>EISSN: 2635-098X</identifier><identifier>DOI: 10.1039/D2DD00019A</identifier><language>eng</language><ispartof>Digital discovery, 2022-08, Vol.1 (4), p.490-501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-884e3b83d307a4aae479e3e1f19834c74afd8dde02553c57717bf431138eb8973</citedby><cites>FETCH-LOGICAL-c289t-884e3b83d307a4aae479e3e1f19834c74afd8dde02553c57717bf431138eb8973</cites><orcidid>0000-0002-6932-1190 ; 0000-0002-7105-9187 ; 0000-0001-6662-4375 ; 0000-0002-0101-4346 ; 0000-0002-7719-9594 ; 0000-0002-8621-8689 ; 0000-0001-6868-8145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barnabas, Shadrack J.</creatorcontrib><creatorcontrib>Böhme, Timo</creatorcontrib><creatorcontrib>Boyer, Stephen K.</creatorcontrib><creatorcontrib>Irmer, Matthias</creatorcontrib><creatorcontrib>Ruttkies, Christoph</creatorcontrib><creatorcontrib>Wetherbee, Ian</creatorcontrib><creatorcontrib>Kondić, Todor</creatorcontrib><creatorcontrib>Schymanski, Emma L.</creatorcontrib><creatorcontrib>Weber, Lutz</creatorcontrib><title>Extraction of chemical structures from literature and patent documents using open access chemistry toolkits: a case study with PFAS</title><title>Digital discovery</title><description>The extraction of chemical information from documents is a demanding task in cheminformatics due to the variety of text and image-based representations of chemistry. The present work describes the extraction of chemical compounds with unique chemical structures from the open access CORE (COnnecting REpositories) and Google Patents full text document repositories. The importance of structure normalization is demonstrated using three open access cheminformatics toolkits: the Chemistry Development Kit (CDK), RDKit and OpenChemLib (OCL). Each toolkit was used for structure parsing, normalization and subsequent substructure searching, using SMILES as structure representations of chemical molecules and International Chemical Identifiers (InChIs) for comparison. Per- and polyfluoroalkyl substances (PFAS) were chosen as a case study to perform the substructure search, due to their high environmental relevance, their presence in both literature and patent corpuses, and the current lack of community consensus on their definition. Three different structural definitions of PFAS were chosen to highlight the implications of various definitions from a cheminformatics perspective. Since CDK, RDKit and OCL implement different criteria and methods for SMILES parsing and normalization, different numbers of parsed compounds were extracted, which were then evaluated using the three PFAS definitions. A comparison of these toolkits and definitions is provided, along with a discussion of the implications for PFAS screening and text mining efforts in cheminformatics. Finally, the extracted PFAS (∼1.7 M PFAS from patents and ∼27 K from CORE) were compared against various existing PFAS lists and are provided in various formats for further community research efforts.</description><issn>2635-098X</issn><issn>2635-098X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEYhIMoWLQXf8F7FlaTzW6TeCv9UKGgoIK3Jc2-sdHdTUmyaM_-cbdU0NMMw_DADCEXjF4xytX1PJ_PKaVMTY_IKJ_wMqNKvh7_86dkHOP70MmFYIxPRuR78ZWCNsn5DrwFs8HWGd1ATKE3qQ8YwQbfQuMSBr0PQHc1bHXCLkHtTd8OJkIfXfcGfosdaGMwxgNqwOwged98uBRvQIPREQd4X-_g06UNPC6nT-fkxOom4vhXz8jLcvE8u8tWD7f3s-kqM7lUKZOyQL6WvOZU6EJrLIRCjswyJXlhRKFtLesaaV6W3JTDQrG2BR92SlxLJfgZuTxwTfAxBrTVNrhWh13FaLV_sPp7kP8AiSplxw</recordid><startdate>20220808</startdate><enddate>20220808</enddate><creator>Barnabas, Shadrack J.</creator><creator>Böhme, Timo</creator><creator>Boyer, Stephen K.</creator><creator>Irmer, Matthias</creator><creator>Ruttkies, Christoph</creator><creator>Wetherbee, Ian</creator><creator>Kondić, Todor</creator><creator>Schymanski, Emma L.</creator><creator>Weber, Lutz</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6932-1190</orcidid><orcidid>https://orcid.org/0000-0002-7105-9187</orcidid><orcidid>https://orcid.org/0000-0001-6662-4375</orcidid><orcidid>https://orcid.org/0000-0002-0101-4346</orcidid><orcidid>https://orcid.org/0000-0002-7719-9594</orcidid><orcidid>https://orcid.org/0000-0002-8621-8689</orcidid><orcidid>https://orcid.org/0000-0001-6868-8145</orcidid></search><sort><creationdate>20220808</creationdate><title>Extraction of chemical structures from literature and patent documents using open access chemistry toolkits: a case study with PFAS</title><author>Barnabas, Shadrack J. ; Böhme, Timo ; Boyer, Stephen K. ; Irmer, Matthias ; Ruttkies, Christoph ; Wetherbee, Ian ; Kondić, Todor ; Schymanski, Emma L. ; Weber, Lutz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-884e3b83d307a4aae479e3e1f19834c74afd8dde02553c57717bf431138eb8973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnabas, Shadrack J.</creatorcontrib><creatorcontrib>Böhme, Timo</creatorcontrib><creatorcontrib>Boyer, Stephen K.</creatorcontrib><creatorcontrib>Irmer, Matthias</creatorcontrib><creatorcontrib>Ruttkies, Christoph</creatorcontrib><creatorcontrib>Wetherbee, Ian</creatorcontrib><creatorcontrib>Kondić, Todor</creatorcontrib><creatorcontrib>Schymanski, Emma L.</creatorcontrib><creatorcontrib>Weber, Lutz</creatorcontrib><collection>CrossRef</collection><jtitle>Digital discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnabas, Shadrack J.</au><au>Böhme, Timo</au><au>Boyer, Stephen K.</au><au>Irmer, Matthias</au><au>Ruttkies, Christoph</au><au>Wetherbee, Ian</au><au>Kondić, Todor</au><au>Schymanski, Emma L.</au><au>Weber, Lutz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of chemical structures from literature and patent documents using open access chemistry toolkits: a case study with PFAS</atitle><jtitle>Digital discovery</jtitle><date>2022-08-08</date><risdate>2022</risdate><volume>1</volume><issue>4</issue><spage>490</spage><epage>501</epage><pages>490-501</pages><issn>2635-098X</issn><eissn>2635-098X</eissn><abstract>The extraction of chemical information from documents is a demanding task in cheminformatics due to the variety of text and image-based representations of chemistry. The present work describes the extraction of chemical compounds with unique chemical structures from the open access CORE (COnnecting REpositories) and Google Patents full text document repositories. The importance of structure normalization is demonstrated using three open access cheminformatics toolkits: the Chemistry Development Kit (CDK), RDKit and OpenChemLib (OCL). Each toolkit was used for structure parsing, normalization and subsequent substructure searching, using SMILES as structure representations of chemical molecules and International Chemical Identifiers (InChIs) for comparison. Per- and polyfluoroalkyl substances (PFAS) were chosen as a case study to perform the substructure search, due to their high environmental relevance, their presence in both literature and patent corpuses, and the current lack of community consensus on their definition. Three different structural definitions of PFAS were chosen to highlight the implications of various definitions from a cheminformatics perspective. Since CDK, RDKit and OCL implement different criteria and methods for SMILES parsing and normalization, different numbers of parsed compounds were extracted, which were then evaluated using the three PFAS definitions. A comparison of these toolkits and definitions is provided, along with a discussion of the implications for PFAS screening and text mining efforts in cheminformatics. Finally, the extracted PFAS (∼1.7 M PFAS from patents and ∼27 K from CORE) were compared against various existing PFAS lists and are provided in various formats for further community research efforts.</abstract><doi>10.1039/D2DD00019A</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6932-1190</orcidid><orcidid>https://orcid.org/0000-0002-7105-9187</orcidid><orcidid>https://orcid.org/0000-0001-6662-4375</orcidid><orcidid>https://orcid.org/0000-0002-0101-4346</orcidid><orcidid>https://orcid.org/0000-0002-7719-9594</orcidid><orcidid>https://orcid.org/0000-0002-8621-8689</orcidid><orcidid>https://orcid.org/0000-0001-6868-8145</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2635-098X |
ispartof | Digital discovery, 2022-08, Vol.1 (4), p.490-501 |
issn | 2635-098X 2635-098X |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2DD00019A |
source | Alma/SFX Local Collection |
title | Extraction of chemical structures from literature and patent documents using open access chemistry toolkits: a case study with PFAS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20chemical%20structures%20from%20literature%20and%20patent%20documents%20using%20open%20access%20chemistry%20toolkits:%20a%20case%20study%20with%20PFAS&rft.jtitle=Digital%20discovery&rft.au=Barnabas,%20Shadrack%20J.&rft.date=2022-08-08&rft.volume=1&rft.issue=4&rft.spage=490&rft.epage=501&rft.pages=490-501&rft.issn=2635-098X&rft.eissn=2635-098X&rft_id=info:doi/10.1039/D2DD00019A&rft_dat=%3Ccrossref%3E10_1039_D2DD00019A%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-884e3b83d307a4aae479e3e1f19834c74afd8dde02553c57717bf431138eb8973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |