Loading…

High-speed and high-resolution 2D and 3D elemental imaging of corroded ancient glass by laser ablation-ICP-MS

In this work, laser ablation-inductively coupled plasma-mass spectrometry was used to investigate for the first time glass weathering mechanisms using high-resolution 2D and 3D elemental maps of altered layers of ancient glass. Roman archaeological glass shards, displaying several corrosion indicato...

Full description

Saved in:
Bibliographic Details
Published in:Journal of analytical atomic spectrometry 2023-04, Vol.38 (4), p.917-926
Main Authors: Zanini, Roberta, Roman, Marco, Cattaruzza, Elti, Traviglia, Arianna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, laser ablation-inductively coupled plasma-mass spectrometry was used to investigate for the first time glass weathering mechanisms using high-resolution 2D and 3D elemental maps of altered layers of ancient glass. Roman archaeological glass shards, displaying several corrosion indicators, were studied using multiple raster-scanning ablation with high depth and lateral resolution. The concentration gradients of different elements were captured (in their variations from the surface to the bulk of pristine glass) by multiple ablations on degraded regions of interest to observe the dissolution of the glass network due to the hydration and leaching processes that occur during its alteration. The results indicated an enrichment of silicon and a depletion of alkaline/alkaline earth element concentration in the first few microns of depth under the surface area suggesting that a de-alkalinisation phenomenon occurs on the glass surface when ancient items have been buried under soil for extended timeframes. The layer-by-layer elemental distribution revealed also how the composition of the archaeological glass changes from the bulk to the surface, shedding light on the leaching behaviour of glass constituents during the alteration process. Optimizing the LA-ICP-MS procedure to obtain 2D and 3D high-resolution multi-elemental imaging of heavily degraded Roman glass for studying glass weathering mechanisms by monitoring the lateral and in-depth distribution of elements.
ISSN:0267-9477
1364-5544
DOI:10.1039/d2ja00337f