Loading…
A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes
Metallic lithium is believed to be the next generation anode material for high energy density energy storage devices due to its high theoretical specific energy density and low electrochemical potential. However, the practical application of lithium metal anodes is impeded by their unstable electrod...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-07, Vol.1 (26), p.13814-1382 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33 |
container_end_page | 1382 |
container_issue | 26 |
container_start_page | 13814 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 1 |
creator | Xiong, Xiaosong Sun, Rui Yan, Wenqi Qiao, Qiao Zhu, Yusong Liu, Lili Fu, Lijun Yu, Nengfei Wu, Yuping Wang, Bin |
description | Metallic lithium is believed to be the next generation anode material for high energy density energy storage devices due to its high theoretical specific energy density and low electrochemical potential. However, the practical application of lithium metal anodes is impeded by their unstable electrode interface and lithium dendrite formation. Herein, constructing an AlN protection layer on the lithium metal interface by a facile blade casting method is reported to inhibit the growth of lithium dendrites.
Via
the spontaneous reactions, the
in situ
formed ionically super conductive Li
3
N and lithiophilic Li-Al alloy reduce the lithium diffusion barrier and enhance the lithium transfer kinetics synergistically, guiding uniform Li deposition without lithium dendrites. The symmetric Li/Li cell sustains 1300 h at 1 mA cm
−2
and 1 mA h cm
−2
with a remarkable low voltage hysteresis of about 10 mV. The feasibility of the AlN layer protected anode is confirmed in conjunction with LiFePO
4
cathodes. The full cells based on the LiFePO
4
cathode deliver an exceptionally high capacity retention of 96.3% after 200 cycles at 1C at a critical restricting N/P capacity of 1.2. In addition, this modified layer is also valid for Li/S batteries. This method provides a great promise for the commercialization of Li metal batteries.
The AlN modified layer enhances the lithium transfer kinetics and regulates uniform Li plating/stripping behavior by providing rapid Li ions transfer channels through the spontaneous formation of favorable Li
+
conductor Li
3
N and Li-Al composites. |
doi_str_mv | 10.1039/d2ta02138b |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TA02138B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684634087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33</originalsourceid><addsrcrecordid>eNpFkMtLxDAQxoMouKx78S4EvAnVvJomx7o-YVGQ9Vyyedgs7aYm3cP-90YrOoeZj-E338AHwDlG1xhReWPIqBDBVGyOwIygEhUVk_z4TwtxChYpbVEugRCXcgbeatj5sfVhaH3nNay7l6IPxjtvDdRhGGyEnTrk7kKErf9oi7zKulc7bafbfQ97O6oOql0wNp2BE6e6ZBe_cw7eH-7Xy6di9fr4vKxXhSYCj4VyGutKK0kEsZxQ4ViJkMFkoxk3GomqdJRxZzXDiBCuZFXJklksiBLSUDoHl5PvEMPn3qax2YZ93OWXDeGCccqyR6auJkrHkFK0rhmi71U8NBg137E1d2Rd_8R2m-GLCY5J_3H_sdIvQKtofw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684634087</pqid></control><display><type>article</type><title>A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes</title><source>Royal Society of Chemistry</source><creator>Xiong, Xiaosong ; Sun, Rui ; Yan, Wenqi ; Qiao, Qiao ; Zhu, Yusong ; Liu, Lili ; Fu, Lijun ; Yu, Nengfei ; Wu, Yuping ; Wang, Bin</creator><creatorcontrib>Xiong, Xiaosong ; Sun, Rui ; Yan, Wenqi ; Qiao, Qiao ; Zhu, Yusong ; Liu, Lili ; Fu, Lijun ; Yu, Nengfei ; Wu, Yuping ; Wang, Bin</creatorcontrib><description>Metallic lithium is believed to be the next generation anode material for high energy density energy storage devices due to its high theoretical specific energy density and low electrochemical potential. However, the practical application of lithium metal anodes is impeded by their unstable electrode interface and lithium dendrite formation. Herein, constructing an AlN protection layer on the lithium metal interface by a facile blade casting method is reported to inhibit the growth of lithium dendrites.
Via
the spontaneous reactions, the
in situ
formed ionically super conductive Li
3
N and lithiophilic Li-Al alloy reduce the lithium diffusion barrier and enhance the lithium transfer kinetics synergistically, guiding uniform Li deposition without lithium dendrites. The symmetric Li/Li cell sustains 1300 h at 1 mA cm
−2
and 1 mA h cm
−2
with a remarkable low voltage hysteresis of about 10 mV. The feasibility of the AlN layer protected anode is confirmed in conjunction with LiFePO
4
cathodes. The full cells based on the LiFePO
4
cathode deliver an exceptionally high capacity retention of 96.3% after 200 cycles at 1C at a critical restricting N/P capacity of 1.2. In addition, this modified layer is also valid for Li/S batteries. This method provides a great promise for the commercialization of Li metal batteries.
The AlN modified layer enhances the lithium transfer kinetics and regulates uniform Li plating/stripping behavior by providing rapid Li ions transfer channels through the spontaneous formation of favorable Li
+
conductor Li
3
N and Li-Al composites.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta02138b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum base alloys ; Anodes ; Anodic protection ; Batteries ; Cathodes ; Cathodic protection ; Commercialization ; Dendrites ; Diffusion barriers ; Electrochemical potential ; Electrochemistry ; Electrode materials ; Energy storage ; Lithium ; Lithium batteries ; Lithium sulfur batteries ; Low voltage ; Metals ; Specific energy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-07, Vol.1 (26), p.13814-1382</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33</citedby><cites>FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33</cites><orcidid>0000-0002-0833-1205 ; 0000-0001-9830-3007 ; 0000-0003-4354-7826 ; 0000-0003-4403-3755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xiong, Xiaosong</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Yan, Wenqi</creatorcontrib><creatorcontrib>Qiao, Qiao</creatorcontrib><creatorcontrib>Zhu, Yusong</creatorcontrib><creatorcontrib>Liu, Lili</creatorcontrib><creatorcontrib>Fu, Lijun</creatorcontrib><creatorcontrib>Yu, Nengfei</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><title>A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Metallic lithium is believed to be the next generation anode material for high energy density energy storage devices due to its high theoretical specific energy density and low electrochemical potential. However, the practical application of lithium metal anodes is impeded by their unstable electrode interface and lithium dendrite formation. Herein, constructing an AlN protection layer on the lithium metal interface by a facile blade casting method is reported to inhibit the growth of lithium dendrites.
Via
the spontaneous reactions, the
in situ
formed ionically super conductive Li
3
N and lithiophilic Li-Al alloy reduce the lithium diffusion barrier and enhance the lithium transfer kinetics synergistically, guiding uniform Li deposition without lithium dendrites. The symmetric Li/Li cell sustains 1300 h at 1 mA cm
−2
and 1 mA h cm
−2
with a remarkable low voltage hysteresis of about 10 mV. The feasibility of the AlN layer protected anode is confirmed in conjunction with LiFePO
4
cathodes. The full cells based on the LiFePO
4
cathode deliver an exceptionally high capacity retention of 96.3% after 200 cycles at 1C at a critical restricting N/P capacity of 1.2. In addition, this modified layer is also valid for Li/S batteries. This method provides a great promise for the commercialization of Li metal batteries.
The AlN modified layer enhances the lithium transfer kinetics and regulates uniform Li plating/stripping behavior by providing rapid Li ions transfer channels through the spontaneous formation of favorable Li
+
conductor Li
3
N and Li-Al composites.</description><subject>Aluminum base alloys</subject><subject>Anodes</subject><subject>Anodic protection</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic protection</subject><subject>Commercialization</subject><subject>Dendrites</subject><subject>Diffusion barriers</subject><subject>Electrochemical potential</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium sulfur batteries</subject><subject>Low voltage</subject><subject>Metals</subject><subject>Specific energy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMtLxDAQxoMouKx78S4EvAnVvJomx7o-YVGQ9Vyyedgs7aYm3cP-90YrOoeZj-E338AHwDlG1xhReWPIqBDBVGyOwIygEhUVk_z4TwtxChYpbVEugRCXcgbeatj5sfVhaH3nNay7l6IPxjtvDdRhGGyEnTrk7kKErf9oi7zKulc7bafbfQ97O6oOql0wNp2BE6e6ZBe_cw7eH-7Xy6di9fr4vKxXhSYCj4VyGutKK0kEsZxQ4ViJkMFkoxk3GomqdJRxZzXDiBCuZFXJklksiBLSUDoHl5PvEMPn3qax2YZ93OWXDeGCccqyR6auJkrHkFK0rhmi71U8NBg137E1d2Rd_8R2m-GLCY5J_3H_sdIvQKtofw</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Xiong, Xiaosong</creator><creator>Sun, Rui</creator><creator>Yan, Wenqi</creator><creator>Qiao, Qiao</creator><creator>Zhu, Yusong</creator><creator>Liu, Lili</creator><creator>Fu, Lijun</creator><creator>Yu, Nengfei</creator><creator>Wu, Yuping</creator><creator>Wang, Bin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0833-1205</orcidid><orcidid>https://orcid.org/0000-0001-9830-3007</orcidid><orcidid>https://orcid.org/0000-0003-4354-7826</orcidid><orcidid>https://orcid.org/0000-0003-4403-3755</orcidid></search><sort><creationdate>20220705</creationdate><title>A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes</title><author>Xiong, Xiaosong ; Sun, Rui ; Yan, Wenqi ; Qiao, Qiao ; Zhu, Yusong ; Liu, Lili ; Fu, Lijun ; Yu, Nengfei ; Wu, Yuping ; Wang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum base alloys</topic><topic>Anodes</topic><topic>Anodic protection</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic protection</topic><topic>Commercialization</topic><topic>Dendrites</topic><topic>Diffusion barriers</topic><topic>Electrochemical potential</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium sulfur batteries</topic><topic>Low voltage</topic><topic>Metals</topic><topic>Specific energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Xiaosong</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Yan, Wenqi</creatorcontrib><creatorcontrib>Qiao, Qiao</creatorcontrib><creatorcontrib>Zhu, Yusong</creatorcontrib><creatorcontrib>Liu, Lili</creatorcontrib><creatorcontrib>Fu, Lijun</creatorcontrib><creatorcontrib>Yu, Nengfei</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Xiaosong</au><au>Sun, Rui</au><au>Yan, Wenqi</au><au>Qiao, Qiao</au><au>Zhu, Yusong</au><au>Liu, Lili</au><au>Fu, Lijun</au><au>Yu, Nengfei</au><au>Wu, Yuping</au><au>Wang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>1</volume><issue>26</issue><spage>13814</spage><epage>1382</epage><pages>13814-1382</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Metallic lithium is believed to be the next generation anode material for high energy density energy storage devices due to its high theoretical specific energy density and low electrochemical potential. However, the practical application of lithium metal anodes is impeded by their unstable electrode interface and lithium dendrite formation. Herein, constructing an AlN protection layer on the lithium metal interface by a facile blade casting method is reported to inhibit the growth of lithium dendrites.
Via
the spontaneous reactions, the
in situ
formed ionically super conductive Li
3
N and lithiophilic Li-Al alloy reduce the lithium diffusion barrier and enhance the lithium transfer kinetics synergistically, guiding uniform Li deposition without lithium dendrites. The symmetric Li/Li cell sustains 1300 h at 1 mA cm
−2
and 1 mA h cm
−2
with a remarkable low voltage hysteresis of about 10 mV. The feasibility of the AlN layer protected anode is confirmed in conjunction with LiFePO
4
cathodes. The full cells based on the LiFePO
4
cathode deliver an exceptionally high capacity retention of 96.3% after 200 cycles at 1C at a critical restricting N/P capacity of 1.2. In addition, this modified layer is also valid for Li/S batteries. This method provides a great promise for the commercialization of Li metal batteries.
The AlN modified layer enhances the lithium transfer kinetics and regulates uniform Li plating/stripping behavior by providing rapid Li ions transfer channels through the spontaneous formation of favorable Li
+
conductor Li
3
N and Li-Al composites.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta02138b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0833-1205</orcidid><orcidid>https://orcid.org/0000-0001-9830-3007</orcidid><orcidid>https://orcid.org/0000-0003-4354-7826</orcidid><orcidid>https://orcid.org/0000-0003-4403-3755</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-07, Vol.1 (26), p.13814-1382 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2TA02138B |
source | Royal Society of Chemistry |
subjects | Aluminum base alloys Anodes Anodic protection Batteries Cathodes Cathodic protection Commercialization Dendrites Diffusion barriers Electrochemical potential Electrochemistry Electrode materials Energy storage Lithium Lithium batteries Lithium sulfur batteries Low voltage Metals Specific energy |
title | A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lithiophilic%20AlN-modified%20copper%20layer%20for%20high-performance%20lithium%20metal%20anodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xiong,%20Xiaosong&rft.date=2022-07-05&rft.volume=1&rft.issue=26&rft.spage=13814&rft.epage=1382&rft.pages=13814-1382&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta02138b&rft_dat=%3Cproquest_cross%3E2684634087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2684634087&rft_id=info:pmid/&rfr_iscdi=true |