Loading…

A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes

Metallic lithium is believed to be the next generation anode material for high energy density energy storage devices due to its high theoretical specific energy density and low electrochemical potential. However, the practical application of lithium metal anodes is impeded by their unstable electrod...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-07, Vol.1 (26), p.13814-1382
Main Authors: Xiong, Xiaosong, Sun, Rui, Yan, Wenqi, Qiao, Qiao, Zhu, Yusong, Liu, Lili, Fu, Lijun, Yu, Nengfei, Wu, Yuping, Wang, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33
cites cdi_FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33
container_end_page 1382
container_issue 26
container_start_page 13814
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 1
creator Xiong, Xiaosong
Sun, Rui
Yan, Wenqi
Qiao, Qiao
Zhu, Yusong
Liu, Lili
Fu, Lijun
Yu, Nengfei
Wu, Yuping
Wang, Bin
description Metallic lithium is believed to be the next generation anode material for high energy density energy storage devices due to its high theoretical specific energy density and low electrochemical potential. However, the practical application of lithium metal anodes is impeded by their unstable electrode interface and lithium dendrite formation. Herein, constructing an AlN protection layer on the lithium metal interface by a facile blade casting method is reported to inhibit the growth of lithium dendrites. Via the spontaneous reactions, the in situ formed ionically super conductive Li 3 N and lithiophilic Li-Al alloy reduce the lithium diffusion barrier and enhance the lithium transfer kinetics synergistically, guiding uniform Li deposition without lithium dendrites. The symmetric Li/Li cell sustains 1300 h at 1 mA cm −2 and 1 mA h cm −2 with a remarkable low voltage hysteresis of about 10 mV. The feasibility of the AlN layer protected anode is confirmed in conjunction with LiFePO 4 cathodes. The full cells based on the LiFePO 4 cathode deliver an exceptionally high capacity retention of 96.3% after 200 cycles at 1C at a critical restricting N/P capacity of 1.2. In addition, this modified layer is also valid for Li/S batteries. This method provides a great promise for the commercialization of Li metal batteries. The AlN modified layer enhances the lithium transfer kinetics and regulates uniform Li plating/stripping behavior by providing rapid Li ions transfer channels through the spontaneous formation of favorable Li + conductor Li 3 N and Li-Al composites.
doi_str_mv 10.1039/d2ta02138b
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TA02138B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684634087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33</originalsourceid><addsrcrecordid>eNpFkMtLxDAQxoMouKx78S4EvAnVvJomx7o-YVGQ9Vyyedgs7aYm3cP-90YrOoeZj-E338AHwDlG1xhReWPIqBDBVGyOwIygEhUVk_z4TwtxChYpbVEugRCXcgbeatj5sfVhaH3nNay7l6IPxjtvDdRhGGyEnTrk7kKErf9oi7zKulc7bafbfQ97O6oOql0wNp2BE6e6ZBe_cw7eH-7Xy6di9fr4vKxXhSYCj4VyGutKK0kEsZxQ4ViJkMFkoxk3GomqdJRxZzXDiBCuZFXJklksiBLSUDoHl5PvEMPn3qax2YZ93OWXDeGCccqyR6auJkrHkFK0rhmi71U8NBg137E1d2Rd_8R2m-GLCY5J_3H_sdIvQKtofw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684634087</pqid></control><display><type>article</type><title>A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes</title><source>Royal Society of Chemistry</source><creator>Xiong, Xiaosong ; Sun, Rui ; Yan, Wenqi ; Qiao, Qiao ; Zhu, Yusong ; Liu, Lili ; Fu, Lijun ; Yu, Nengfei ; Wu, Yuping ; Wang, Bin</creator><creatorcontrib>Xiong, Xiaosong ; Sun, Rui ; Yan, Wenqi ; Qiao, Qiao ; Zhu, Yusong ; Liu, Lili ; Fu, Lijun ; Yu, Nengfei ; Wu, Yuping ; Wang, Bin</creatorcontrib><description>Metallic lithium is believed to be the next generation anode material for high energy density energy storage devices due to its high theoretical specific energy density and low electrochemical potential. However, the practical application of lithium metal anodes is impeded by their unstable electrode interface and lithium dendrite formation. Herein, constructing an AlN protection layer on the lithium metal interface by a facile blade casting method is reported to inhibit the growth of lithium dendrites. Via the spontaneous reactions, the in situ formed ionically super conductive Li 3 N and lithiophilic Li-Al alloy reduce the lithium diffusion barrier and enhance the lithium transfer kinetics synergistically, guiding uniform Li deposition without lithium dendrites. The symmetric Li/Li cell sustains 1300 h at 1 mA cm −2 and 1 mA h cm −2 with a remarkable low voltage hysteresis of about 10 mV. The feasibility of the AlN layer protected anode is confirmed in conjunction with LiFePO 4 cathodes. The full cells based on the LiFePO 4 cathode deliver an exceptionally high capacity retention of 96.3% after 200 cycles at 1C at a critical restricting N/P capacity of 1.2. In addition, this modified layer is also valid for Li/S batteries. This method provides a great promise for the commercialization of Li metal batteries. The AlN modified layer enhances the lithium transfer kinetics and regulates uniform Li plating/stripping behavior by providing rapid Li ions transfer channels through the spontaneous formation of favorable Li + conductor Li 3 N and Li-Al composites.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta02138b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum base alloys ; Anodes ; Anodic protection ; Batteries ; Cathodes ; Cathodic protection ; Commercialization ; Dendrites ; Diffusion barriers ; Electrochemical potential ; Electrochemistry ; Electrode materials ; Energy storage ; Lithium ; Lithium batteries ; Lithium sulfur batteries ; Low voltage ; Metals ; Specific energy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-07, Vol.1 (26), p.13814-1382</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33</citedby><cites>FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33</cites><orcidid>0000-0002-0833-1205 ; 0000-0001-9830-3007 ; 0000-0003-4354-7826 ; 0000-0003-4403-3755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xiong, Xiaosong</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Yan, Wenqi</creatorcontrib><creatorcontrib>Qiao, Qiao</creatorcontrib><creatorcontrib>Zhu, Yusong</creatorcontrib><creatorcontrib>Liu, Lili</creatorcontrib><creatorcontrib>Fu, Lijun</creatorcontrib><creatorcontrib>Yu, Nengfei</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><title>A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Metallic lithium is believed to be the next generation anode material for high energy density energy storage devices due to its high theoretical specific energy density and low electrochemical potential. However, the practical application of lithium metal anodes is impeded by their unstable electrode interface and lithium dendrite formation. Herein, constructing an AlN protection layer on the lithium metal interface by a facile blade casting method is reported to inhibit the growth of lithium dendrites. Via the spontaneous reactions, the in situ formed ionically super conductive Li 3 N and lithiophilic Li-Al alloy reduce the lithium diffusion barrier and enhance the lithium transfer kinetics synergistically, guiding uniform Li deposition without lithium dendrites. The symmetric Li/Li cell sustains 1300 h at 1 mA cm −2 and 1 mA h cm −2 with a remarkable low voltage hysteresis of about 10 mV. The feasibility of the AlN layer protected anode is confirmed in conjunction with LiFePO 4 cathodes. The full cells based on the LiFePO 4 cathode deliver an exceptionally high capacity retention of 96.3% after 200 cycles at 1C at a critical restricting N/P capacity of 1.2. In addition, this modified layer is also valid for Li/S batteries. This method provides a great promise for the commercialization of Li metal batteries. The AlN modified layer enhances the lithium transfer kinetics and regulates uniform Li plating/stripping behavior by providing rapid Li ions transfer channels through the spontaneous formation of favorable Li + conductor Li 3 N and Li-Al composites.</description><subject>Aluminum base alloys</subject><subject>Anodes</subject><subject>Anodic protection</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic protection</subject><subject>Commercialization</subject><subject>Dendrites</subject><subject>Diffusion barriers</subject><subject>Electrochemical potential</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium sulfur batteries</subject><subject>Low voltage</subject><subject>Metals</subject><subject>Specific energy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMtLxDAQxoMouKx78S4EvAnVvJomx7o-YVGQ9Vyyedgs7aYm3cP-90YrOoeZj-E338AHwDlG1xhReWPIqBDBVGyOwIygEhUVk_z4TwtxChYpbVEugRCXcgbeatj5sfVhaH3nNay7l6IPxjtvDdRhGGyEnTrk7kKErf9oi7zKulc7bafbfQ97O6oOql0wNp2BE6e6ZBe_cw7eH-7Xy6di9fr4vKxXhSYCj4VyGutKK0kEsZxQ4ViJkMFkoxk3GomqdJRxZzXDiBCuZFXJklksiBLSUDoHl5PvEMPn3qax2YZ93OWXDeGCccqyR6auJkrHkFK0rhmi71U8NBg137E1d2Rd_8R2m-GLCY5J_3H_sdIvQKtofw</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Xiong, Xiaosong</creator><creator>Sun, Rui</creator><creator>Yan, Wenqi</creator><creator>Qiao, Qiao</creator><creator>Zhu, Yusong</creator><creator>Liu, Lili</creator><creator>Fu, Lijun</creator><creator>Yu, Nengfei</creator><creator>Wu, Yuping</creator><creator>Wang, Bin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0833-1205</orcidid><orcidid>https://orcid.org/0000-0001-9830-3007</orcidid><orcidid>https://orcid.org/0000-0003-4354-7826</orcidid><orcidid>https://orcid.org/0000-0003-4403-3755</orcidid></search><sort><creationdate>20220705</creationdate><title>A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes</title><author>Xiong, Xiaosong ; Sun, Rui ; Yan, Wenqi ; Qiao, Qiao ; Zhu, Yusong ; Liu, Lili ; Fu, Lijun ; Yu, Nengfei ; Wu, Yuping ; Wang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum base alloys</topic><topic>Anodes</topic><topic>Anodic protection</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic protection</topic><topic>Commercialization</topic><topic>Dendrites</topic><topic>Diffusion barriers</topic><topic>Electrochemical potential</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium sulfur batteries</topic><topic>Low voltage</topic><topic>Metals</topic><topic>Specific energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Xiaosong</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Yan, Wenqi</creatorcontrib><creatorcontrib>Qiao, Qiao</creatorcontrib><creatorcontrib>Zhu, Yusong</creatorcontrib><creatorcontrib>Liu, Lili</creatorcontrib><creatorcontrib>Fu, Lijun</creatorcontrib><creatorcontrib>Yu, Nengfei</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Xiaosong</au><au>Sun, Rui</au><au>Yan, Wenqi</au><au>Qiao, Qiao</au><au>Zhu, Yusong</au><au>Liu, Lili</au><au>Fu, Lijun</au><au>Yu, Nengfei</au><au>Wu, Yuping</au><au>Wang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>1</volume><issue>26</issue><spage>13814</spage><epage>1382</epage><pages>13814-1382</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Metallic lithium is believed to be the next generation anode material for high energy density energy storage devices due to its high theoretical specific energy density and low electrochemical potential. However, the practical application of lithium metal anodes is impeded by their unstable electrode interface and lithium dendrite formation. Herein, constructing an AlN protection layer on the lithium metal interface by a facile blade casting method is reported to inhibit the growth of lithium dendrites. Via the spontaneous reactions, the in situ formed ionically super conductive Li 3 N and lithiophilic Li-Al alloy reduce the lithium diffusion barrier and enhance the lithium transfer kinetics synergistically, guiding uniform Li deposition without lithium dendrites. The symmetric Li/Li cell sustains 1300 h at 1 mA cm −2 and 1 mA h cm −2 with a remarkable low voltage hysteresis of about 10 mV. The feasibility of the AlN layer protected anode is confirmed in conjunction with LiFePO 4 cathodes. The full cells based on the LiFePO 4 cathode deliver an exceptionally high capacity retention of 96.3% after 200 cycles at 1C at a critical restricting N/P capacity of 1.2. In addition, this modified layer is also valid for Li/S batteries. This method provides a great promise for the commercialization of Li metal batteries. The AlN modified layer enhances the lithium transfer kinetics and regulates uniform Li plating/stripping behavior by providing rapid Li ions transfer channels through the spontaneous formation of favorable Li + conductor Li 3 N and Li-Al composites.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta02138b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0833-1205</orcidid><orcidid>https://orcid.org/0000-0001-9830-3007</orcidid><orcidid>https://orcid.org/0000-0003-4354-7826</orcidid><orcidid>https://orcid.org/0000-0003-4403-3755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-07, Vol.1 (26), p.13814-1382
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D2TA02138B
source Royal Society of Chemistry
subjects Aluminum base alloys
Anodes
Anodic protection
Batteries
Cathodes
Cathodic protection
Commercialization
Dendrites
Diffusion barriers
Electrochemical potential
Electrochemistry
Electrode materials
Energy storage
Lithium
Lithium batteries
Lithium sulfur batteries
Low voltage
Metals
Specific energy
title A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lithiophilic%20AlN-modified%20copper%20layer%20for%20high-performance%20lithium%20metal%20anodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xiong,%20Xiaosong&rft.date=2022-07-05&rft.volume=1&rft.issue=26&rft.spage=13814&rft.epage=1382&rft.pages=13814-1382&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta02138b&rft_dat=%3Cproquest_cross%3E2684634087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-afc1c7ca9282e6238f4500d12bc46dc0875f346fec410226a977954e182a89d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2684634087&rft_id=info:pmid/&rfr_iscdi=true