Loading…

Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media

Alkaline water electrolysis is the most promising technology for green-hydrogen production, which is considered a cornerstone of carbon-neutral energy society. In the development of functional catalysts able to overcome the sluggish kinetics of the alkaline hydrogen evolution reaction (HER), MXenes...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-03, Vol.11 (1), p.5328-5336
Main Authors: Hong, Haeji, Kim, Ho Young, Cho, Won Il, Song, Ho Chang, Ham, Hyung Chul, Chae, Kyunghee, Marques Mota, Filipe, Kim, Jin Young, Kim, Dong Ha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73
cites cdi_FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73
container_end_page 5336
container_issue 1
container_start_page 5328
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Hong, Haeji
Kim, Ho Young
Cho, Won Il
Song, Ho Chang
Ham, Hyung Chul
Chae, Kyunghee
Marques Mota, Filipe
Kim, Jin Young
Kim, Dong Ha
description Alkaline water electrolysis is the most promising technology for green-hydrogen production, which is considered a cornerstone of carbon-neutral energy society. In the development of functional catalysts able to overcome the sluggish kinetics of the alkaline hydrogen evolution reaction (HER), MXenes emerge as attractive support candidates with distinctive hydrophilicity, high conductivity, and high (electro)chemical stability. Herein, we assess the promise of three-dimensionally interconnected Ti 3 C 2 T x MXenes with distinct surface terminations (-O, -OH, and -F) as efficient support materials for Pt-loaded alkaline HER catalysts. In particular, our OH-functionalized Pt/Ti 3 C 2 (OH) x shows the highest HER activity (30 mV dec −1 ), unlocking a competitive performance against the Pt/C reference (61 mV dec −1 ) and benchmark literature reports. The outstanding performance is ascribed to the cooperative effects of the extended MXene surface area and established interactions between Pt and Ti(OH) x surface centers. In parallel, the oxophilic nature of Ti 3 C 2 (OH) x facilitates Pt dispersion, presumably playing a key role in the extended catalytic stability here reported. The superior activity is further substantiated by density functional theory calculations, with the modeled Pt/Ti 3 C 2 (OH) 2 unveiling a significantly higher onset potential and the weakest hydrogen binding energy over supported Pt nanoparticles (−2.51 eV) against both -O (−2.72 eV) and -F (−3.15 eV) functionalized counterparts. Distinctive surface functional groups on 3D MXenes as Pt-supports are correlated with optimized Pt-H affinity and HER activity in alkaline media.
doi_str_mv 10.1039/d2ta08852e
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TA08852E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783584479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73</originalsourceid><addsrcrecordid>eNpFkc9LwzAUx4MoOOYu3oWAN6Gapk2THsf8CRMFJ3grMXlxnV0zk3RQj_7lZpvMd8kj-bzv4_sNQqcpuUxJVl5pGiQRglE4QANKGEl4XhaH-16IYzTyfkFiCUKKshygn5fOGakgMV2rQm1b2dTfoHGYO4BE10to_fYWP75BC9h3q5V1weNg8bu1PkQS8LzXzn5Ai2Ftm24jg2VUW9ehx9bg54CVDLLpfRys41vzGddEtSXoWp6gIyMbD6O_c4heb29mk_tk-nT3MBlPE0VFGhJaUiajB00J5UwYKgvgihQFJYSlIAhVuWEZaJ6youA6JmII4bEvea40z4bofKe7cvarAx-qhe1ctOYrykXGRJ7zMlIXO0o5670DU61cvZSur1JSbWKurulsvI35JsJnO9h5tef-vyH7BSRWeqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783584479</pqid></control><display><type>article</type><title>Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media</title><source>Royal Society of Chemistry</source><creator>Hong, Haeji ; Kim, Ho Young ; Cho, Won Il ; Song, Ho Chang ; Ham, Hyung Chul ; Chae, Kyunghee ; Marques Mota, Filipe ; Kim, Jin Young ; Kim, Dong Ha</creator><creatorcontrib>Hong, Haeji ; Kim, Ho Young ; Cho, Won Il ; Song, Ho Chang ; Ham, Hyung Chul ; Chae, Kyunghee ; Marques Mota, Filipe ; Kim, Jin Young ; Kim, Dong Ha</creatorcontrib><description>Alkaline water electrolysis is the most promising technology for green-hydrogen production, which is considered a cornerstone of carbon-neutral energy society. In the development of functional catalysts able to overcome the sluggish kinetics of the alkaline hydrogen evolution reaction (HER), MXenes emerge as attractive support candidates with distinctive hydrophilicity, high conductivity, and high (electro)chemical stability. Herein, we assess the promise of three-dimensionally interconnected Ti 3 C 2 T x MXenes with distinct surface terminations (-O, -OH, and -F) as efficient support materials for Pt-loaded alkaline HER catalysts. In particular, our OH-functionalized Pt/Ti 3 C 2 (OH) x shows the highest HER activity (30 mV dec −1 ), unlocking a competitive performance against the Pt/C reference (61 mV dec −1 ) and benchmark literature reports. The outstanding performance is ascribed to the cooperative effects of the extended MXene surface area and established interactions between Pt and Ti(OH) x surface centers. In parallel, the oxophilic nature of Ti 3 C 2 (OH) x facilitates Pt dispersion, presumably playing a key role in the extended catalytic stability here reported. The superior activity is further substantiated by density functional theory calculations, with the modeled Pt/Ti 3 C 2 (OH) 2 unveiling a significantly higher onset potential and the weakest hydrogen binding energy over supported Pt nanoparticles (−2.51 eV) against both -O (−2.72 eV) and -F (−3.15 eV) functionalized counterparts. Distinctive surface functional groups on 3D MXenes as Pt-supports are correlated with optimized Pt-H affinity and HER activity in alkaline media.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta08852e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkaline water ; Catalysts ; Density functional theory ; Electrolysis ; Green hydrogen ; Hydrogen ; Hydrogen evolution reactions ; Hydrogen production ; MXenes ; Nanoparticles ; Stability analysis</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (1), p.5328-5336</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73</citedby><cites>FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73</cites><orcidid>0000-0003-0444-0479 ; 0000-0002-0928-3583 ; 0000-0003-4822-3804 ; 0000-0002-9112-8098 ; 0000-0003-3801-0020 ; 0000-0002-1060-4727 ; 0000-0002-9560-192X ; 0000-0001-6923-6239 ; 0000-0003-0850-584X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hong, Haeji</creatorcontrib><creatorcontrib>Kim, Ho Young</creatorcontrib><creatorcontrib>Cho, Won Il</creatorcontrib><creatorcontrib>Song, Ho Chang</creatorcontrib><creatorcontrib>Ham, Hyung Chul</creatorcontrib><creatorcontrib>Chae, Kyunghee</creatorcontrib><creatorcontrib>Marques Mota, Filipe</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Kim, Dong Ha</creatorcontrib><title>Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Alkaline water electrolysis is the most promising technology for green-hydrogen production, which is considered a cornerstone of carbon-neutral energy society. In the development of functional catalysts able to overcome the sluggish kinetics of the alkaline hydrogen evolution reaction (HER), MXenes emerge as attractive support candidates with distinctive hydrophilicity, high conductivity, and high (electro)chemical stability. Herein, we assess the promise of three-dimensionally interconnected Ti 3 C 2 T x MXenes with distinct surface terminations (-O, -OH, and -F) as efficient support materials for Pt-loaded alkaline HER catalysts. In particular, our OH-functionalized Pt/Ti 3 C 2 (OH) x shows the highest HER activity (30 mV dec −1 ), unlocking a competitive performance against the Pt/C reference (61 mV dec −1 ) and benchmark literature reports. The outstanding performance is ascribed to the cooperative effects of the extended MXene surface area and established interactions between Pt and Ti(OH) x surface centers. In parallel, the oxophilic nature of Ti 3 C 2 (OH) x facilitates Pt dispersion, presumably playing a key role in the extended catalytic stability here reported. The superior activity is further substantiated by density functional theory calculations, with the modeled Pt/Ti 3 C 2 (OH) 2 unveiling a significantly higher onset potential and the weakest hydrogen binding energy over supported Pt nanoparticles (−2.51 eV) against both -O (−2.72 eV) and -F (−3.15 eV) functionalized counterparts. Distinctive surface functional groups on 3D MXenes as Pt-supports are correlated with optimized Pt-H affinity and HER activity in alkaline media.</description><subject>Alkaline water</subject><subject>Catalysts</subject><subject>Density functional theory</subject><subject>Electrolysis</subject><subject>Green hydrogen</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>MXenes</subject><subject>Nanoparticles</subject><subject>Stability analysis</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkc9LwzAUx4MoOOYu3oWAN6Gapk2THsf8CRMFJ3grMXlxnV0zk3RQj_7lZpvMd8kj-bzv4_sNQqcpuUxJVl5pGiQRglE4QANKGEl4XhaH-16IYzTyfkFiCUKKshygn5fOGakgMV2rQm1b2dTfoHGYO4BE10to_fYWP75BC9h3q5V1weNg8bu1PkQS8LzXzn5Ai2Ftm24jg2VUW9ehx9bg54CVDLLpfRys41vzGddEtSXoWp6gIyMbD6O_c4heb29mk_tk-nT3MBlPE0VFGhJaUiajB00J5UwYKgvgihQFJYSlIAhVuWEZaJ6youA6JmII4bEvea40z4bofKe7cvarAx-qhe1ctOYrykXGRJ7zMlIXO0o5670DU61cvZSur1JSbWKurulsvI35JsJnO9h5tef-vyH7BSRWeqQ</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Hong, Haeji</creator><creator>Kim, Ho Young</creator><creator>Cho, Won Il</creator><creator>Song, Ho Chang</creator><creator>Ham, Hyung Chul</creator><creator>Chae, Kyunghee</creator><creator>Marques Mota, Filipe</creator><creator>Kim, Jin Young</creator><creator>Kim, Dong Ha</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0444-0479</orcidid><orcidid>https://orcid.org/0000-0002-0928-3583</orcidid><orcidid>https://orcid.org/0000-0003-4822-3804</orcidid><orcidid>https://orcid.org/0000-0002-9112-8098</orcidid><orcidid>https://orcid.org/0000-0003-3801-0020</orcidid><orcidid>https://orcid.org/0000-0002-1060-4727</orcidid><orcidid>https://orcid.org/0000-0002-9560-192X</orcidid><orcidid>https://orcid.org/0000-0001-6923-6239</orcidid><orcidid>https://orcid.org/0000-0003-0850-584X</orcidid></search><sort><creationdate>20230307</creationdate><title>Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media</title><author>Hong, Haeji ; Kim, Ho Young ; Cho, Won Il ; Song, Ho Chang ; Ham, Hyung Chul ; Chae, Kyunghee ; Marques Mota, Filipe ; Kim, Jin Young ; Kim, Dong Ha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alkaline water</topic><topic>Catalysts</topic><topic>Density functional theory</topic><topic>Electrolysis</topic><topic>Green hydrogen</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>MXenes</topic><topic>Nanoparticles</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Haeji</creatorcontrib><creatorcontrib>Kim, Ho Young</creatorcontrib><creatorcontrib>Cho, Won Il</creatorcontrib><creatorcontrib>Song, Ho Chang</creatorcontrib><creatorcontrib>Ham, Hyung Chul</creatorcontrib><creatorcontrib>Chae, Kyunghee</creatorcontrib><creatorcontrib>Marques Mota, Filipe</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Kim, Dong Ha</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Haeji</au><au>Kim, Ho Young</au><au>Cho, Won Il</au><au>Song, Ho Chang</au><au>Ham, Hyung Chul</au><au>Chae, Kyunghee</au><au>Marques Mota, Filipe</au><au>Kim, Jin Young</au><au>Kim, Dong Ha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-03-07</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><spage>5328</spage><epage>5336</epage><pages>5328-5336</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Alkaline water electrolysis is the most promising technology for green-hydrogen production, which is considered a cornerstone of carbon-neutral energy society. In the development of functional catalysts able to overcome the sluggish kinetics of the alkaline hydrogen evolution reaction (HER), MXenes emerge as attractive support candidates with distinctive hydrophilicity, high conductivity, and high (electro)chemical stability. Herein, we assess the promise of three-dimensionally interconnected Ti 3 C 2 T x MXenes with distinct surface terminations (-O, -OH, and -F) as efficient support materials for Pt-loaded alkaline HER catalysts. In particular, our OH-functionalized Pt/Ti 3 C 2 (OH) x shows the highest HER activity (30 mV dec −1 ), unlocking a competitive performance against the Pt/C reference (61 mV dec −1 ) and benchmark literature reports. The outstanding performance is ascribed to the cooperative effects of the extended MXene surface area and established interactions between Pt and Ti(OH) x surface centers. In parallel, the oxophilic nature of Ti 3 C 2 (OH) x facilitates Pt dispersion, presumably playing a key role in the extended catalytic stability here reported. The superior activity is further substantiated by density functional theory calculations, with the modeled Pt/Ti 3 C 2 (OH) 2 unveiling a significantly higher onset potential and the weakest hydrogen binding energy over supported Pt nanoparticles (−2.51 eV) against both -O (−2.72 eV) and -F (−3.15 eV) functionalized counterparts. Distinctive surface functional groups on 3D MXenes as Pt-supports are correlated with optimized Pt-H affinity and HER activity in alkaline media.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta08852e</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0444-0479</orcidid><orcidid>https://orcid.org/0000-0002-0928-3583</orcidid><orcidid>https://orcid.org/0000-0003-4822-3804</orcidid><orcidid>https://orcid.org/0000-0002-9112-8098</orcidid><orcidid>https://orcid.org/0000-0003-3801-0020</orcidid><orcidid>https://orcid.org/0000-0002-1060-4727</orcidid><orcidid>https://orcid.org/0000-0002-9560-192X</orcidid><orcidid>https://orcid.org/0000-0001-6923-6239</orcidid><orcidid>https://orcid.org/0000-0003-0850-584X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (1), p.5328-5336
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D2TA08852E
source Royal Society of Chemistry
subjects Alkaline water
Catalysts
Density functional theory
Electrolysis
Green hydrogen
Hydrogen
Hydrogen evolution reactions
Hydrogen production
MXenes
Nanoparticles
Stability analysis
title Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-functionalized%20three-dimensional%20MXene%20supports%20to%20boost%20the%20hydrogen%20evolution%20activity%20of%20Pt%20catalysts%20in%20alkaline%20media&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Hong,%20Haeji&rft.date=2023-03-07&rft.volume=11&rft.issue=1&rft.spage=5328&rft.epage=5336&rft.pages=5328-5336&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta08852e&rft_dat=%3Cproquest_cross%3E2783584479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2783584479&rft_id=info:pmid/&rfr_iscdi=true