Loading…
Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media
Alkaline water electrolysis is the most promising technology for green-hydrogen production, which is considered a cornerstone of carbon-neutral energy society. In the development of functional catalysts able to overcome the sluggish kinetics of the alkaline hydrogen evolution reaction (HER), MXenes...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-03, Vol.11 (1), p.5328-5336 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73 |
container_end_page | 5336 |
container_issue | 1 |
container_start_page | 5328 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Hong, Haeji Kim, Ho Young Cho, Won Il Song, Ho Chang Ham, Hyung Chul Chae, Kyunghee Marques Mota, Filipe Kim, Jin Young Kim, Dong Ha |
description | Alkaline water electrolysis is the most promising technology for green-hydrogen production, which is considered a cornerstone of carbon-neutral energy society. In the development of functional catalysts able to overcome the sluggish kinetics of the alkaline hydrogen evolution reaction (HER), MXenes emerge as attractive support candidates with distinctive hydrophilicity, high conductivity, and high (electro)chemical stability. Herein, we assess the promise of three-dimensionally interconnected Ti
3
C
2
T
x
MXenes with distinct surface terminations (-O, -OH, and -F) as efficient support materials for Pt-loaded alkaline HER catalysts. In particular, our OH-functionalized Pt/Ti
3
C
2
(OH)
x
shows the highest HER activity (30 mV dec
−1
), unlocking a competitive performance against the Pt/C reference (61 mV dec
−1
) and benchmark literature reports. The outstanding performance is ascribed to the cooperative effects of the extended MXene surface area and established interactions between Pt and Ti(OH)
x
surface centers. In parallel, the oxophilic nature of Ti
3
C
2
(OH)
x
facilitates Pt dispersion, presumably playing a key role in the extended catalytic stability here reported. The superior activity is further substantiated by density functional theory calculations, with the modeled Pt/Ti
3
C
2
(OH)
2
unveiling a significantly higher onset potential and the weakest hydrogen binding energy over supported Pt nanoparticles (−2.51 eV) against both -O (−2.72 eV) and -F (−3.15 eV) functionalized counterparts.
Distinctive surface functional groups on 3D MXenes as Pt-supports are correlated with optimized Pt-H affinity and HER activity in alkaline media. |
doi_str_mv | 10.1039/d2ta08852e |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TA08852E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783584479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73</originalsourceid><addsrcrecordid>eNpFkc9LwzAUx4MoOOYu3oWAN6Gapk2THsf8CRMFJ3grMXlxnV0zk3RQj_7lZpvMd8kj-bzv4_sNQqcpuUxJVl5pGiQRglE4QANKGEl4XhaH-16IYzTyfkFiCUKKshygn5fOGakgMV2rQm1b2dTfoHGYO4BE10to_fYWP75BC9h3q5V1weNg8bu1PkQS8LzXzn5Ai2Ftm24jg2VUW9ehx9bg54CVDLLpfRys41vzGddEtSXoWp6gIyMbD6O_c4heb29mk_tk-nT3MBlPE0VFGhJaUiajB00J5UwYKgvgihQFJYSlIAhVuWEZaJ6youA6JmII4bEvea40z4bofKe7cvarAx-qhe1ctOYrykXGRJ7zMlIXO0o5670DU61cvZSur1JSbWKurulsvI35JsJnO9h5tef-vyH7BSRWeqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783584479</pqid></control><display><type>article</type><title>Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media</title><source>Royal Society of Chemistry</source><creator>Hong, Haeji ; Kim, Ho Young ; Cho, Won Il ; Song, Ho Chang ; Ham, Hyung Chul ; Chae, Kyunghee ; Marques Mota, Filipe ; Kim, Jin Young ; Kim, Dong Ha</creator><creatorcontrib>Hong, Haeji ; Kim, Ho Young ; Cho, Won Il ; Song, Ho Chang ; Ham, Hyung Chul ; Chae, Kyunghee ; Marques Mota, Filipe ; Kim, Jin Young ; Kim, Dong Ha</creatorcontrib><description>Alkaline water electrolysis is the most promising technology for green-hydrogen production, which is considered a cornerstone of carbon-neutral energy society. In the development of functional catalysts able to overcome the sluggish kinetics of the alkaline hydrogen evolution reaction (HER), MXenes emerge as attractive support candidates with distinctive hydrophilicity, high conductivity, and high (electro)chemical stability. Herein, we assess the promise of three-dimensionally interconnected Ti
3
C
2
T
x
MXenes with distinct surface terminations (-O, -OH, and -F) as efficient support materials for Pt-loaded alkaline HER catalysts. In particular, our OH-functionalized Pt/Ti
3
C
2
(OH)
x
shows the highest HER activity (30 mV dec
−1
), unlocking a competitive performance against the Pt/C reference (61 mV dec
−1
) and benchmark literature reports. The outstanding performance is ascribed to the cooperative effects of the extended MXene surface area and established interactions between Pt and Ti(OH)
x
surface centers. In parallel, the oxophilic nature of Ti
3
C
2
(OH)
x
facilitates Pt dispersion, presumably playing a key role in the extended catalytic stability here reported. The superior activity is further substantiated by density functional theory calculations, with the modeled Pt/Ti
3
C
2
(OH)
2
unveiling a significantly higher onset potential and the weakest hydrogen binding energy over supported Pt nanoparticles (−2.51 eV) against both -O (−2.72 eV) and -F (−3.15 eV) functionalized counterparts.
Distinctive surface functional groups on 3D MXenes as Pt-supports are correlated with optimized Pt-H affinity and HER activity in alkaline media.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta08852e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkaline water ; Catalysts ; Density functional theory ; Electrolysis ; Green hydrogen ; Hydrogen ; Hydrogen evolution reactions ; Hydrogen production ; MXenes ; Nanoparticles ; Stability analysis</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (1), p.5328-5336</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73</citedby><cites>FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73</cites><orcidid>0000-0003-0444-0479 ; 0000-0002-0928-3583 ; 0000-0003-4822-3804 ; 0000-0002-9112-8098 ; 0000-0003-3801-0020 ; 0000-0002-1060-4727 ; 0000-0002-9560-192X ; 0000-0001-6923-6239 ; 0000-0003-0850-584X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hong, Haeji</creatorcontrib><creatorcontrib>Kim, Ho Young</creatorcontrib><creatorcontrib>Cho, Won Il</creatorcontrib><creatorcontrib>Song, Ho Chang</creatorcontrib><creatorcontrib>Ham, Hyung Chul</creatorcontrib><creatorcontrib>Chae, Kyunghee</creatorcontrib><creatorcontrib>Marques Mota, Filipe</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Kim, Dong Ha</creatorcontrib><title>Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Alkaline water electrolysis is the most promising technology for green-hydrogen production, which is considered a cornerstone of carbon-neutral energy society. In the development of functional catalysts able to overcome the sluggish kinetics of the alkaline hydrogen evolution reaction (HER), MXenes emerge as attractive support candidates with distinctive hydrophilicity, high conductivity, and high (electro)chemical stability. Herein, we assess the promise of three-dimensionally interconnected Ti
3
C
2
T
x
MXenes with distinct surface terminations (-O, -OH, and -F) as efficient support materials for Pt-loaded alkaline HER catalysts. In particular, our OH-functionalized Pt/Ti
3
C
2
(OH)
x
shows the highest HER activity (30 mV dec
−1
), unlocking a competitive performance against the Pt/C reference (61 mV dec
−1
) and benchmark literature reports. The outstanding performance is ascribed to the cooperative effects of the extended MXene surface area and established interactions between Pt and Ti(OH)
x
surface centers. In parallel, the oxophilic nature of Ti
3
C
2
(OH)
x
facilitates Pt dispersion, presumably playing a key role in the extended catalytic stability here reported. The superior activity is further substantiated by density functional theory calculations, with the modeled Pt/Ti
3
C
2
(OH)
2
unveiling a significantly higher onset potential and the weakest hydrogen binding energy over supported Pt nanoparticles (−2.51 eV) against both -O (−2.72 eV) and -F (−3.15 eV) functionalized counterparts.
Distinctive surface functional groups on 3D MXenes as Pt-supports are correlated with optimized Pt-H affinity and HER activity in alkaline media.</description><subject>Alkaline water</subject><subject>Catalysts</subject><subject>Density functional theory</subject><subject>Electrolysis</subject><subject>Green hydrogen</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>MXenes</subject><subject>Nanoparticles</subject><subject>Stability analysis</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkc9LwzAUx4MoOOYu3oWAN6Gapk2THsf8CRMFJ3grMXlxnV0zk3RQj_7lZpvMd8kj-bzv4_sNQqcpuUxJVl5pGiQRglE4QANKGEl4XhaH-16IYzTyfkFiCUKKshygn5fOGakgMV2rQm1b2dTfoHGYO4BE10to_fYWP75BC9h3q5V1weNg8bu1PkQS8LzXzn5Ai2Ftm24jg2VUW9ehx9bg54CVDLLpfRys41vzGddEtSXoWp6gIyMbD6O_c4heb29mk_tk-nT3MBlPE0VFGhJaUiajB00J5UwYKgvgihQFJYSlIAhVuWEZaJ6youA6JmII4bEvea40z4bofKe7cvarAx-qhe1ctOYrykXGRJ7zMlIXO0o5670DU61cvZSur1JSbWKurulsvI35JsJnO9h5tef-vyH7BSRWeqQ</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Hong, Haeji</creator><creator>Kim, Ho Young</creator><creator>Cho, Won Il</creator><creator>Song, Ho Chang</creator><creator>Ham, Hyung Chul</creator><creator>Chae, Kyunghee</creator><creator>Marques Mota, Filipe</creator><creator>Kim, Jin Young</creator><creator>Kim, Dong Ha</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0444-0479</orcidid><orcidid>https://orcid.org/0000-0002-0928-3583</orcidid><orcidid>https://orcid.org/0000-0003-4822-3804</orcidid><orcidid>https://orcid.org/0000-0002-9112-8098</orcidid><orcidid>https://orcid.org/0000-0003-3801-0020</orcidid><orcidid>https://orcid.org/0000-0002-1060-4727</orcidid><orcidid>https://orcid.org/0000-0002-9560-192X</orcidid><orcidid>https://orcid.org/0000-0001-6923-6239</orcidid><orcidid>https://orcid.org/0000-0003-0850-584X</orcidid></search><sort><creationdate>20230307</creationdate><title>Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media</title><author>Hong, Haeji ; Kim, Ho Young ; Cho, Won Il ; Song, Ho Chang ; Ham, Hyung Chul ; Chae, Kyunghee ; Marques Mota, Filipe ; Kim, Jin Young ; Kim, Dong Ha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alkaline water</topic><topic>Catalysts</topic><topic>Density functional theory</topic><topic>Electrolysis</topic><topic>Green hydrogen</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>MXenes</topic><topic>Nanoparticles</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Haeji</creatorcontrib><creatorcontrib>Kim, Ho Young</creatorcontrib><creatorcontrib>Cho, Won Il</creatorcontrib><creatorcontrib>Song, Ho Chang</creatorcontrib><creatorcontrib>Ham, Hyung Chul</creatorcontrib><creatorcontrib>Chae, Kyunghee</creatorcontrib><creatorcontrib>Marques Mota, Filipe</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Kim, Dong Ha</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Haeji</au><au>Kim, Ho Young</au><au>Cho, Won Il</au><au>Song, Ho Chang</au><au>Ham, Hyung Chul</au><au>Chae, Kyunghee</au><au>Marques Mota, Filipe</au><au>Kim, Jin Young</au><au>Kim, Dong Ha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-03-07</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><spage>5328</spage><epage>5336</epage><pages>5328-5336</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Alkaline water electrolysis is the most promising technology for green-hydrogen production, which is considered a cornerstone of carbon-neutral energy society. In the development of functional catalysts able to overcome the sluggish kinetics of the alkaline hydrogen evolution reaction (HER), MXenes emerge as attractive support candidates with distinctive hydrophilicity, high conductivity, and high (electro)chemical stability. Herein, we assess the promise of three-dimensionally interconnected Ti
3
C
2
T
x
MXenes with distinct surface terminations (-O, -OH, and -F) as efficient support materials for Pt-loaded alkaline HER catalysts. In particular, our OH-functionalized Pt/Ti
3
C
2
(OH)
x
shows the highest HER activity (30 mV dec
−1
), unlocking a competitive performance against the Pt/C reference (61 mV dec
−1
) and benchmark literature reports. The outstanding performance is ascribed to the cooperative effects of the extended MXene surface area and established interactions between Pt and Ti(OH)
x
surface centers. In parallel, the oxophilic nature of Ti
3
C
2
(OH)
x
facilitates Pt dispersion, presumably playing a key role in the extended catalytic stability here reported. The superior activity is further substantiated by density functional theory calculations, with the modeled Pt/Ti
3
C
2
(OH)
2
unveiling a significantly higher onset potential and the weakest hydrogen binding energy over supported Pt nanoparticles (−2.51 eV) against both -O (−2.72 eV) and -F (−3.15 eV) functionalized counterparts.
Distinctive surface functional groups on 3D MXenes as Pt-supports are correlated with optimized Pt-H affinity and HER activity in alkaline media.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta08852e</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0444-0479</orcidid><orcidid>https://orcid.org/0000-0002-0928-3583</orcidid><orcidid>https://orcid.org/0000-0003-4822-3804</orcidid><orcidid>https://orcid.org/0000-0002-9112-8098</orcidid><orcidid>https://orcid.org/0000-0003-3801-0020</orcidid><orcidid>https://orcid.org/0000-0002-1060-4727</orcidid><orcidid>https://orcid.org/0000-0002-9560-192X</orcidid><orcidid>https://orcid.org/0000-0001-6923-6239</orcidid><orcidid>https://orcid.org/0000-0003-0850-584X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (1), p.5328-5336 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2TA08852E |
source | Royal Society of Chemistry |
subjects | Alkaline water Catalysts Density functional theory Electrolysis Green hydrogen Hydrogen Hydrogen evolution reactions Hydrogen production MXenes Nanoparticles Stability analysis |
title | Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-functionalized%20three-dimensional%20MXene%20supports%20to%20boost%20the%20hydrogen%20evolution%20activity%20of%20Pt%20catalysts%20in%20alkaline%20media&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Hong,%20Haeji&rft.date=2023-03-07&rft.volume=11&rft.issue=1&rft.spage=5328&rft.epage=5336&rft.pages=5328-5336&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta08852e&rft_dat=%3Cproquest_cross%3E2783584479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-2925a488d202758f2a6e7c06620051e802c4f53ed715667d039f007566974cd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2783584479&rft_id=info:pmid/&rfr_iscdi=true |