Loading…
Pattern formation and collective effects during the process of the motion of magnetic nanomotors in narrow channels
Magnetic motors can transform the energy of an external magnetic field into the kinetic energy of their motion. When moving collectively in a microchannel, the motors interact not only with each other but also with the channel walls, which leads to a wide variety of motion modes. In our work, the co...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2023-04, Vol.25 (16), p.1178-11788 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnetic motors can transform the energy of an external magnetic field into the kinetic energy of their motion. When moving collectively in a microchannel, the motors interact not only with each other but also with the channel walls, which leads to a wide variety of motion modes. In our work, the collective motion of magnetic Fe
3
O
4
nanomotors in different fluids in a microchannel in a non-uniform magnetic field is studied. During the process of their motion, the nanomotors induce flow of the surrounding liquid and move together with the liquid convective flow. Due to the liquid deceleration at the channel wall, the velocity of the motors depends on the channel height. In the case of a magnetic field gradient increasing in the direction of the nanomotors' motion, the propagating front, separating the region occupied by the nanomotors, becomes unstable. By contrast, the diffusive motion of the nanomotors in the liquid prevents the development of perturbations on the front. Overall, the velocity of the nanomotors' motion and their spatial distribution were found to vary
versus
the channel height, magnetic field, concentration of nanomotors in the suspension, and the viscosity of the liquid.
Under certain conditions of inhomogeneity of the magnetic field, peculiar "thread-channels" are formed in the liquid along which nanomotors move. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d3cp00435j |