Loading…

A rigorous uncertainty-aware quantification framework is essential for reproducible and replicable machine learning workflows

The capability to replicate the predictions by machine learning (ML) or artificial intelligence (AI) models and the results in scientific workflows that incorporate such ML/AI predictions is driven by a variety of factors. An uncertainty-aware metric that can quantitatively assess the reproducibilit...

Full description

Saved in:
Bibliographic Details
Published in:Digital discovery 2023-10, Vol.2 (5), p.1251-1258
Main Authors: Pouchard, Line, Reyes, Kristofer G, Alexander, Francis J, Yoon, Byung-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-10733dedc4ec56327ffa9e1b1c7d3f558e70d4ddd1a188edbf9309722c1f2a0a3
cites cdi_FETCH-LOGICAL-c316t-10733dedc4ec56327ffa9e1b1c7d3f558e70d4ddd1a188edbf9309722c1f2a0a3
container_end_page 1258
container_issue 5
container_start_page 1251
container_title Digital discovery
container_volume 2
creator Pouchard, Line
Reyes, Kristofer G
Alexander, Francis J
Yoon, Byung-Jun
description The capability to replicate the predictions by machine learning (ML) or artificial intelligence (AI) models and the results in scientific workflows that incorporate such ML/AI predictions is driven by a variety of factors. An uncertainty-aware metric that can quantitatively assess the reproducibility of the quantities of interest (QoI) would contribute to the trustworthiness of the results obtained from scientific workflows involving ML/AI models. In this article, we discuss how uncertainty quantification (UQ) in a Bayesian paradigm can provide a general and rigorous framework for quantifying the reproducibility of complex scientific workflows. Such frameworks have the potential to fill a critical gap that currently exists in ML/AI for scientific workflows, as they will enable researchers to determine the impact of ML/AI model prediction variability on the predictive outcomes of ML/AI-powered workflows. We expect that the envisioned framework will contribute to the design of more reproducible and trustworthy workflows for diverse scientific applications, and ultimately, accelerate scientific discoveries. The capability to replicate the predictions by machine learning (ML) or artificial intelligence (AI) models and the results in scientific workflows that incorporate such ML/AI predictions is driven by a variety of factors.
doi_str_mv 10.1039/d3dd00094j
format article
fullrecord <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3DD00094J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3dd00094j</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-10733dedc4ec56327ffa9e1b1c7d3f558e70d4ddd1a188edbf9309722c1f2a0a3</originalsourceid><addsrcrecordid>eNpNkc1LAzEQxYMoWGov3oXgUVhNNt2PHEvrJwUvCt6WaTJpU7dJTXYpPfi_u2tFPc3Mm9-8wxtCzjm75kzIGy20ZozJ8fqIDNJcZAmT5dvxv_6UjGJcd0xaFJyLfEA-JzTYpQ--jbR1CkMD1jX7BHYQkH604BprrILGekdNgA3ufHinNlKMEbsl1NT4QANug9etsosaKTjdC3V3148bUCvrkNYIwVm3pL2Fqf0unpETA3XE0U8dkte725fpQzJ_vn-cTuaJEjxvEs4KITRqNUaV5SItjAGJfMFVoYXJshILpsdaaw68LFEvjBRMFmmquEmBgRiSy4Ovj42torINqpXyzqFqKi6lFF0aQ3J1gFTwMQY01TbYDYR9xVnVB1zNxGz2HfBTB18c4BDVL_f3APEFJ2V7vw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A rigorous uncertainty-aware quantification framework is essential for reproducible and replicable machine learning workflows</title><source>Alma/SFX Local Collection</source><creator>Pouchard, Line ; Reyes, Kristofer G ; Alexander, Francis J ; Yoon, Byung-Jun</creator><creatorcontrib>Pouchard, Line ; Reyes, Kristofer G ; Alexander, Francis J ; Yoon, Byung-Jun ; Brookhaven National Laboratory (BNL), Upton, NY (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>The capability to replicate the predictions by machine learning (ML) or artificial intelligence (AI) models and the results in scientific workflows that incorporate such ML/AI predictions is driven by a variety of factors. An uncertainty-aware metric that can quantitatively assess the reproducibility of the quantities of interest (QoI) would contribute to the trustworthiness of the results obtained from scientific workflows involving ML/AI models. In this article, we discuss how uncertainty quantification (UQ) in a Bayesian paradigm can provide a general and rigorous framework for quantifying the reproducibility of complex scientific workflows. Such frameworks have the potential to fill a critical gap that currently exists in ML/AI for scientific workflows, as they will enable researchers to determine the impact of ML/AI model prediction variability on the predictive outcomes of ML/AI-powered workflows. We expect that the envisioned framework will contribute to the design of more reproducible and trustworthy workflows for diverse scientific applications, and ultimately, accelerate scientific discoveries. The capability to replicate the predictions by machine learning (ML) or artificial intelligence (AI) models and the results in scientific workflows that incorporate such ML/AI predictions is driven by a variety of factors.</description><identifier>ISSN: 2635-098X</identifier><identifier>EISSN: 2635-098X</identifier><identifier>DOI: 10.1039/d3dd00094j</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>MATHEMATICS AND COMPUTING</subject><ispartof>Digital discovery, 2023-10, Vol.2 (5), p.1251-1258</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-10733dedc4ec56327ffa9e1b1c7d3f558e70d4ddd1a188edbf9309722c1f2a0a3</citedby><cites>FETCH-LOGICAL-c316t-10733dedc4ec56327ffa9e1b1c7d3f558e70d4ddd1a188edbf9309722c1f2a0a3</cites><orcidid>0000-0001-9328-1101 ; 0000000193281101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1999311$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pouchard, Line</creatorcontrib><creatorcontrib>Reyes, Kristofer G</creatorcontrib><creatorcontrib>Alexander, Francis J</creatorcontrib><creatorcontrib>Yoon, Byung-Jun</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>A rigorous uncertainty-aware quantification framework is essential for reproducible and replicable machine learning workflows</title><title>Digital discovery</title><description>The capability to replicate the predictions by machine learning (ML) or artificial intelligence (AI) models and the results in scientific workflows that incorporate such ML/AI predictions is driven by a variety of factors. An uncertainty-aware metric that can quantitatively assess the reproducibility of the quantities of interest (QoI) would contribute to the trustworthiness of the results obtained from scientific workflows involving ML/AI models. In this article, we discuss how uncertainty quantification (UQ) in a Bayesian paradigm can provide a general and rigorous framework for quantifying the reproducibility of complex scientific workflows. Such frameworks have the potential to fill a critical gap that currently exists in ML/AI for scientific workflows, as they will enable researchers to determine the impact of ML/AI model prediction variability on the predictive outcomes of ML/AI-powered workflows. We expect that the envisioned framework will contribute to the design of more reproducible and trustworthy workflows for diverse scientific applications, and ultimately, accelerate scientific discoveries. The capability to replicate the predictions by machine learning (ML) or artificial intelligence (AI) models and the results in scientific workflows that incorporate such ML/AI predictions is driven by a variety of factors.</description><subject>MATHEMATICS AND COMPUTING</subject><issn>2635-098X</issn><issn>2635-098X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkc1LAzEQxYMoWGov3oXgUVhNNt2PHEvrJwUvCt6WaTJpU7dJTXYpPfi_u2tFPc3Mm9-8wxtCzjm75kzIGy20ZozJ8fqIDNJcZAmT5dvxv_6UjGJcd0xaFJyLfEA-JzTYpQ--jbR1CkMD1jX7BHYQkH604BprrILGekdNgA3ufHinNlKMEbsl1NT4QANug9etsosaKTjdC3V3148bUCvrkNYIwVm3pL2Fqf0unpETA3XE0U8dkte725fpQzJ_vn-cTuaJEjxvEs4KITRqNUaV5SItjAGJfMFVoYXJshILpsdaaw68LFEvjBRMFmmquEmBgRiSy4Ovj42torINqpXyzqFqKi6lFF0aQ3J1gFTwMQY01TbYDYR9xVnVB1zNxGz2HfBTB18c4BDVL_f3APEFJ2V7vw</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Pouchard, Line</creator><creator>Reyes, Kristofer G</creator><creator>Alexander, Francis J</creator><creator>Yoon, Byung-Jun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9328-1101</orcidid><orcidid>https://orcid.org/0000000193281101</orcidid></search><sort><creationdate>20231009</creationdate><title>A rigorous uncertainty-aware quantification framework is essential for reproducible and replicable machine learning workflows</title><author>Pouchard, Line ; Reyes, Kristofer G ; Alexander, Francis J ; Yoon, Byung-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-10733dedc4ec56327ffa9e1b1c7d3f558e70d4ddd1a188edbf9309722c1f2a0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>MATHEMATICS AND COMPUTING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pouchard, Line</creatorcontrib><creatorcontrib>Reyes, Kristofer G</creatorcontrib><creatorcontrib>Alexander, Francis J</creatorcontrib><creatorcontrib>Yoon, Byung-Jun</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Digital discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pouchard, Line</au><au>Reyes, Kristofer G</au><au>Alexander, Francis J</au><au>Yoon, Byung-Jun</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A rigorous uncertainty-aware quantification framework is essential for reproducible and replicable machine learning workflows</atitle><jtitle>Digital discovery</jtitle><date>2023-10-09</date><risdate>2023</risdate><volume>2</volume><issue>5</issue><spage>1251</spage><epage>1258</epage><pages>1251-1258</pages><issn>2635-098X</issn><eissn>2635-098X</eissn><abstract>The capability to replicate the predictions by machine learning (ML) or artificial intelligence (AI) models and the results in scientific workflows that incorporate such ML/AI predictions is driven by a variety of factors. An uncertainty-aware metric that can quantitatively assess the reproducibility of the quantities of interest (QoI) would contribute to the trustworthiness of the results obtained from scientific workflows involving ML/AI models. In this article, we discuss how uncertainty quantification (UQ) in a Bayesian paradigm can provide a general and rigorous framework for quantifying the reproducibility of complex scientific workflows. Such frameworks have the potential to fill a critical gap that currently exists in ML/AI for scientific workflows, as they will enable researchers to determine the impact of ML/AI model prediction variability on the predictive outcomes of ML/AI-powered workflows. We expect that the envisioned framework will contribute to the design of more reproducible and trustworthy workflows for diverse scientific applications, and ultimately, accelerate scientific discoveries. The capability to replicate the predictions by machine learning (ML) or artificial intelligence (AI) models and the results in scientific workflows that incorporate such ML/AI predictions is driven by a variety of factors.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3dd00094j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9328-1101</orcidid><orcidid>https://orcid.org/0000000193281101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2635-098X
ispartof Digital discovery, 2023-10, Vol.2 (5), p.1251-1258
issn 2635-098X
2635-098X
language eng
recordid cdi_crossref_primary_10_1039_D3DD00094J
source Alma/SFX Local Collection
subjects MATHEMATICS AND COMPUTING
title A rigorous uncertainty-aware quantification framework is essential for reproducible and replicable machine learning workflows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20rigorous%20uncertainty-aware%20quantification%20framework%20is%20essential%20for%20reproducible%20and%20replicable%20machine%20learning%20workflows&rft.jtitle=Digital%20discovery&rft.au=Pouchard,%20Line&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2023-10-09&rft.volume=2&rft.issue=5&rft.spage=1251&rft.epage=1258&rft.pages=1251-1258&rft.issn=2635-098X&rft.eissn=2635-098X&rft_id=info:doi/10.1039/d3dd00094j&rft_dat=%3Crsc_cross%3Ed3dd00094j%3C/rsc_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-10733dedc4ec56327ffa9e1b1c7d3f558e70d4ddd1a188edbf9309722c1f2a0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true