Loading…
Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning
High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a viable technique in time efficient screening, specifically for PROTAC design and biologica...
Saved in:
Published in: | MedChemComm 2024-03, Vol.15 (3), p.115-121 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-d29d474f8a5e4b6d38a15fab23eef7b0bcb7bc17032ad1e84b95a06ca26891483 |
container_end_page | 121 |
container_issue | 3 |
container_start_page | 115 |
container_title | MedChemComm |
container_volume | 15 |
creator | McCorkindale, William Filep, Mihajlo London, Nir Lee, Alpha A King-Smith, Emma |
description | High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a viable technique in time efficient screening, specifically for PROTAC design and biological evaluation. However, one notable limitation is the prerequisite of high yielding reactions to ensure the desired compound is indeed the compound responsible for biological activity. Herein, we report a machine learning based yield-assay deconfounder capable of deconvoluting low yield from low potency to identify false negatives. We validated this approach by identifying promising SARS-CoV-2 main protease inhibitors with nanomolar activity that rivaled potency observed from the standard D2B workflow. Furthermore, we show how our framework can be utilized in a broad,
in silico
screen to produce compounds of similar potency as a D2B assay.
Augmenting direct-to-biology workflows with a new machine learning framework. |
doi_str_mv | 10.1039/d3md00719g |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3MD00719G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2974004345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d29d474f8a5e4b6d38a15fab23eef7b0bcb7bc17032ad1e84b95a06ca26891483</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EolXphTvIEheEtOBve08INVCQirjAFcv2ehO3XjvYu43y32NICYXTjDS_eXozD4CnGL3GiPZvBjoNCEncrx-AUyIo6ZRQ5OG9_gSc13qNECIcY8H7x-CEKo6FQPwUfF95l9Ntjssc0hrGvIP74OMAx5InuPPmBm7z7JPbw5DgEIp3czfnzoYc83oPd7ncjG2rwl2YN3AybhOSh9GbkprgE_BoNLH687t6Br59eP_14mN39eXy08W7q85RpeZuIP3AJBuV4Z5ZMVBlMB-NJdT7UVpknZXWYYkoMQP2itmeGyScIUL1mCl6Bt4edLeLnfzgfJqLiXpbwmTKXmcT9L-TFDZ6nW81Rj2nTMmm8PJOoeQfi6-znkJ1PkaTfF6qJr1kCDHKeENf_Ide56Wkdl-jhFJStt836tWBciXXWvx4dIOR_hWdXtHPq9_RXTb4-X3_R_RPUA14dgBKdcfp3-zpT2nJn8E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2968877263</pqid></control><display><type>article</type><title>Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning</title><source>Royal Society of Chemistry Journals</source><creator>McCorkindale, William ; Filep, Mihajlo ; London, Nir ; Lee, Alpha A ; King-Smith, Emma</creator><creatorcontrib>McCorkindale, William ; Filep, Mihajlo ; London, Nir ; Lee, Alpha A ; King-Smith, Emma</creatorcontrib><description>High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a viable technique in time efficient screening, specifically for PROTAC design and biological evaluation. However, one notable limitation is the prerequisite of high yielding reactions to ensure the desired compound is indeed the compound responsible for biological activity. Herein, we report a machine learning based yield-assay deconfounder capable of deconvoluting low yield from low potency to identify false negatives. We validated this approach by identifying promising SARS-CoV-2 main protease inhibitors with nanomolar activity that rivaled potency observed from the standard D2B workflow. Furthermore, we show how our framework can be utilized in a broad,
in silico
screen to produce compounds of similar potency as a D2B assay.
Augmenting direct-to-biology workflows with a new machine learning framework.</description><identifier>ISSN: 2632-8682</identifier><identifier>ISSN: 2040-2503</identifier><identifier>EISSN: 2632-8682</identifier><identifier>EISSN: 2040-2511</identifier><identifier>DOI: 10.1039/d3md00719g</identifier><identifier>PMID: 38516605</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological activity ; Biology ; Chemistry ; Learning algorithms ; Machine learning ; Protease inhibitors ; Proteinase inhibitors ; Severe acute respiratory syndrome coronavirus 2 ; Workflow</subject><ispartof>MedChemComm, 2024-03, Vol.15 (3), p.115-121</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-d29d474f8a5e4b6d38a15fab23eef7b0bcb7bc17032ad1e84b95a06ca26891483</cites><orcidid>0000-0002-9616-3108 ; 0000-0003-2687-0699 ; 0000-0002-2999-0955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38516605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCorkindale, William</creatorcontrib><creatorcontrib>Filep, Mihajlo</creatorcontrib><creatorcontrib>London, Nir</creatorcontrib><creatorcontrib>Lee, Alpha A</creatorcontrib><creatorcontrib>King-Smith, Emma</creatorcontrib><title>Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning</title><title>MedChemComm</title><addtitle>RSC Med Chem</addtitle><description>High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a viable technique in time efficient screening, specifically for PROTAC design and biological evaluation. However, one notable limitation is the prerequisite of high yielding reactions to ensure the desired compound is indeed the compound responsible for biological activity. Herein, we report a machine learning based yield-assay deconfounder capable of deconvoluting low yield from low potency to identify false negatives. We validated this approach by identifying promising SARS-CoV-2 main protease inhibitors with nanomolar activity that rivaled potency observed from the standard D2B workflow. Furthermore, we show how our framework can be utilized in a broad,
in silico
screen to produce compounds of similar potency as a D2B assay.
Augmenting direct-to-biology workflows with a new machine learning framework.</description><subject>Biological activity</subject><subject>Biology</subject><subject>Chemistry</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Protease inhibitors</subject><subject>Proteinase inhibitors</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Workflow</subject><issn>2632-8682</issn><issn>2040-2503</issn><issn>2632-8682</issn><issn>2040-2511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vEzEQxS0EolXphTvIEheEtOBve08INVCQirjAFcv2ehO3XjvYu43y32NICYXTjDS_eXozD4CnGL3GiPZvBjoNCEncrx-AUyIo6ZRQ5OG9_gSc13qNECIcY8H7x-CEKo6FQPwUfF95l9Ntjssc0hrGvIP74OMAx5InuPPmBm7z7JPbw5DgEIp3czfnzoYc83oPd7ncjG2rwl2YN3AybhOSh9GbkprgE_BoNLH687t6Br59eP_14mN39eXy08W7q85RpeZuIP3AJBuV4Z5ZMVBlMB-NJdT7UVpknZXWYYkoMQP2itmeGyScIUL1mCl6Bt4edLeLnfzgfJqLiXpbwmTKXmcT9L-TFDZ6nW81Rj2nTMmm8PJOoeQfi6-znkJ1PkaTfF6qJr1kCDHKeENf_Ide56Wkdl-jhFJStt836tWBciXXWvx4dIOR_hWdXtHPq9_RXTb4-X3_R_RPUA14dgBKdcfp3-zpT2nJn8E</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>McCorkindale, William</creator><creator>Filep, Mihajlo</creator><creator>London, Nir</creator><creator>Lee, Alpha A</creator><creator>King-Smith, Emma</creator><general>Royal Society of Chemistry</general><general>RSC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T5</scope><scope>7T7</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9616-3108</orcidid><orcidid>https://orcid.org/0000-0003-2687-0699</orcidid><orcidid>https://orcid.org/0000-0002-2999-0955</orcidid></search><sort><creationdate>20240320</creationdate><title>Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning</title><author>McCorkindale, William ; Filep, Mihajlo ; London, Nir ; Lee, Alpha A ; King-Smith, Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d29d474f8a5e4b6d38a15fab23eef7b0bcb7bc17032ad1e84b95a06ca26891483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological activity</topic><topic>Biology</topic><topic>Chemistry</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Protease inhibitors</topic><topic>Proteinase inhibitors</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCorkindale, William</creatorcontrib><creatorcontrib>Filep, Mihajlo</creatorcontrib><creatorcontrib>London, Nir</creatorcontrib><creatorcontrib>Lee, Alpha A</creatorcontrib><creatorcontrib>King-Smith, Emma</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>MedChemComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCorkindale, William</au><au>Filep, Mihajlo</au><au>London, Nir</au><au>Lee, Alpha A</au><au>King-Smith, Emma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning</atitle><jtitle>MedChemComm</jtitle><addtitle>RSC Med Chem</addtitle><date>2024-03-20</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>115</spage><epage>121</epage><pages>115-121</pages><issn>2632-8682</issn><issn>2040-2503</issn><eissn>2632-8682</eissn><eissn>2040-2511</eissn><abstract>High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a viable technique in time efficient screening, specifically for PROTAC design and biological evaluation. However, one notable limitation is the prerequisite of high yielding reactions to ensure the desired compound is indeed the compound responsible for biological activity. Herein, we report a machine learning based yield-assay deconfounder capable of deconvoluting low yield from low potency to identify false negatives. We validated this approach by identifying promising SARS-CoV-2 main protease inhibitors with nanomolar activity that rivaled potency observed from the standard D2B workflow. Furthermore, we show how our framework can be utilized in a broad,
in silico
screen to produce compounds of similar potency as a D2B assay.
Augmenting direct-to-biology workflows with a new machine learning framework.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38516605</pmid><doi>10.1039/d3md00719g</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9616-3108</orcidid><orcidid>https://orcid.org/0000-0003-2687-0699</orcidid><orcidid>https://orcid.org/0000-0002-2999-0955</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-8682 |
ispartof | MedChemComm, 2024-03, Vol.15 (3), p.115-121 |
issn | 2632-8682 2040-2503 2632-8682 2040-2511 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3MD00719G |
source | Royal Society of Chemistry Journals |
subjects | Biological activity Biology Chemistry Learning algorithms Machine learning Protease inhibitors Proteinase inhibitors Severe acute respiratory syndrome coronavirus 2 Workflow |
title | Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconvoluting%20low%20yield%20from%20weak%20potency%20in%20direct-to-biology%20workflows%20with%20machine%20learning&rft.jtitle=MedChemComm&rft.au=McCorkindale,%20William&rft.date=2024-03-20&rft.volume=15&rft.issue=3&rft.spage=115&rft.epage=121&rft.pages=115-121&rft.issn=2632-8682&rft.eissn=2632-8682&rft_id=info:doi/10.1039/d3md00719g&rft_dat=%3Cproquest_cross%3E2974004345%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-d29d474f8a5e4b6d38a15fab23eef7b0bcb7bc17032ad1e84b95a06ca26891483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2968877263&rft_id=info:pmid/38516605&rfr_iscdi=true |