Loading…

Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning

High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a viable technique in time efficient screening, specifically for PROTAC design and biologica...

Full description

Saved in:
Bibliographic Details
Published in:MedChemComm 2024-03, Vol.15 (3), p.115-121
Main Authors: McCorkindale, William, Filep, Mihajlo, London, Nir, Lee, Alpha A, King-Smith, Emma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c388t-d29d474f8a5e4b6d38a15fab23eef7b0bcb7bc17032ad1e84b95a06ca26891483
container_end_page 121
container_issue 3
container_start_page 115
container_title MedChemComm
container_volume 15
creator McCorkindale, William
Filep, Mihajlo
London, Nir
Lee, Alpha A
King-Smith, Emma
description High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a viable technique in time efficient screening, specifically for PROTAC design and biological evaluation. However, one notable limitation is the prerequisite of high yielding reactions to ensure the desired compound is indeed the compound responsible for biological activity. Herein, we report a machine learning based yield-assay deconfounder capable of deconvoluting low yield from low potency to identify false negatives. We validated this approach by identifying promising SARS-CoV-2 main protease inhibitors with nanomolar activity that rivaled potency observed from the standard D2B workflow. Furthermore, we show how our framework can be utilized in a broad, in silico screen to produce compounds of similar potency as a D2B assay. Augmenting direct-to-biology workflows with a new machine learning framework.
doi_str_mv 10.1039/d3md00719g
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3MD00719G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2974004345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d29d474f8a5e4b6d38a15fab23eef7b0bcb7bc17032ad1e84b95a06ca26891483</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EolXphTvIEheEtOBve08INVCQirjAFcv2ehO3XjvYu43y32NICYXTjDS_eXozD4CnGL3GiPZvBjoNCEncrx-AUyIo6ZRQ5OG9_gSc13qNECIcY8H7x-CEKo6FQPwUfF95l9Ntjssc0hrGvIP74OMAx5InuPPmBm7z7JPbw5DgEIp3czfnzoYc83oPd7ncjG2rwl2YN3AybhOSh9GbkprgE_BoNLH687t6Br59eP_14mN39eXy08W7q85RpeZuIP3AJBuV4Z5ZMVBlMB-NJdT7UVpknZXWYYkoMQP2itmeGyScIUL1mCl6Bt4edLeLnfzgfJqLiXpbwmTKXmcT9L-TFDZ6nW81Rj2nTMmm8PJOoeQfi6-znkJ1PkaTfF6qJr1kCDHKeENf_Ide56Wkdl-jhFJStt836tWBciXXWvx4dIOR_hWdXtHPq9_RXTb4-X3_R_RPUA14dgBKdcfp3-zpT2nJn8E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2968877263</pqid></control><display><type>article</type><title>Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning</title><source>Royal Society of Chemistry Journals</source><creator>McCorkindale, William ; Filep, Mihajlo ; London, Nir ; Lee, Alpha A ; King-Smith, Emma</creator><creatorcontrib>McCorkindale, William ; Filep, Mihajlo ; London, Nir ; Lee, Alpha A ; King-Smith, Emma</creatorcontrib><description>High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a viable technique in time efficient screening, specifically for PROTAC design and biological evaluation. However, one notable limitation is the prerequisite of high yielding reactions to ensure the desired compound is indeed the compound responsible for biological activity. Herein, we report a machine learning based yield-assay deconfounder capable of deconvoluting low yield from low potency to identify false negatives. We validated this approach by identifying promising SARS-CoV-2 main protease inhibitors with nanomolar activity that rivaled potency observed from the standard D2B workflow. Furthermore, we show how our framework can be utilized in a broad, in silico screen to produce compounds of similar potency as a D2B assay. Augmenting direct-to-biology workflows with a new machine learning framework.</description><identifier>ISSN: 2632-8682</identifier><identifier>ISSN: 2040-2503</identifier><identifier>EISSN: 2632-8682</identifier><identifier>EISSN: 2040-2511</identifier><identifier>DOI: 10.1039/d3md00719g</identifier><identifier>PMID: 38516605</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological activity ; Biology ; Chemistry ; Learning algorithms ; Machine learning ; Protease inhibitors ; Proteinase inhibitors ; Severe acute respiratory syndrome coronavirus 2 ; Workflow</subject><ispartof>MedChemComm, 2024-03, Vol.15 (3), p.115-121</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-d29d474f8a5e4b6d38a15fab23eef7b0bcb7bc17032ad1e84b95a06ca26891483</cites><orcidid>0000-0002-9616-3108 ; 0000-0003-2687-0699 ; 0000-0002-2999-0955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38516605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCorkindale, William</creatorcontrib><creatorcontrib>Filep, Mihajlo</creatorcontrib><creatorcontrib>London, Nir</creatorcontrib><creatorcontrib>Lee, Alpha A</creatorcontrib><creatorcontrib>King-Smith, Emma</creatorcontrib><title>Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning</title><title>MedChemComm</title><addtitle>RSC Med Chem</addtitle><description>High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a viable technique in time efficient screening, specifically for PROTAC design and biological evaluation. However, one notable limitation is the prerequisite of high yielding reactions to ensure the desired compound is indeed the compound responsible for biological activity. Herein, we report a machine learning based yield-assay deconfounder capable of deconvoluting low yield from low potency to identify false negatives. We validated this approach by identifying promising SARS-CoV-2 main protease inhibitors with nanomolar activity that rivaled potency observed from the standard D2B workflow. Furthermore, we show how our framework can be utilized in a broad, in silico screen to produce compounds of similar potency as a D2B assay. Augmenting direct-to-biology workflows with a new machine learning framework.</description><subject>Biological activity</subject><subject>Biology</subject><subject>Chemistry</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Protease inhibitors</subject><subject>Proteinase inhibitors</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Workflow</subject><issn>2632-8682</issn><issn>2040-2503</issn><issn>2632-8682</issn><issn>2040-2511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vEzEQxS0EolXphTvIEheEtOBve08INVCQirjAFcv2ehO3XjvYu43y32NICYXTjDS_eXozD4CnGL3GiPZvBjoNCEncrx-AUyIo6ZRQ5OG9_gSc13qNECIcY8H7x-CEKo6FQPwUfF95l9Ntjssc0hrGvIP74OMAx5InuPPmBm7z7JPbw5DgEIp3czfnzoYc83oPd7ncjG2rwl2YN3AybhOSh9GbkprgE_BoNLH687t6Br59eP_14mN39eXy08W7q85RpeZuIP3AJBuV4Z5ZMVBlMB-NJdT7UVpknZXWYYkoMQP2itmeGyScIUL1mCl6Bt4edLeLnfzgfJqLiXpbwmTKXmcT9L-TFDZ6nW81Rj2nTMmm8PJOoeQfi6-znkJ1PkaTfF6qJr1kCDHKeENf_Ide56Wkdl-jhFJStt836tWBciXXWvx4dIOR_hWdXtHPq9_RXTb4-X3_R_RPUA14dgBKdcfp3-zpT2nJn8E</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>McCorkindale, William</creator><creator>Filep, Mihajlo</creator><creator>London, Nir</creator><creator>Lee, Alpha A</creator><creator>King-Smith, Emma</creator><general>Royal Society of Chemistry</general><general>RSC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T5</scope><scope>7T7</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9616-3108</orcidid><orcidid>https://orcid.org/0000-0003-2687-0699</orcidid><orcidid>https://orcid.org/0000-0002-2999-0955</orcidid></search><sort><creationdate>20240320</creationdate><title>Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning</title><author>McCorkindale, William ; Filep, Mihajlo ; London, Nir ; Lee, Alpha A ; King-Smith, Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d29d474f8a5e4b6d38a15fab23eef7b0bcb7bc17032ad1e84b95a06ca26891483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological activity</topic><topic>Biology</topic><topic>Chemistry</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Protease inhibitors</topic><topic>Proteinase inhibitors</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCorkindale, William</creatorcontrib><creatorcontrib>Filep, Mihajlo</creatorcontrib><creatorcontrib>London, Nir</creatorcontrib><creatorcontrib>Lee, Alpha A</creatorcontrib><creatorcontrib>King-Smith, Emma</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>MedChemComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCorkindale, William</au><au>Filep, Mihajlo</au><au>London, Nir</au><au>Lee, Alpha A</au><au>King-Smith, Emma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning</atitle><jtitle>MedChemComm</jtitle><addtitle>RSC Med Chem</addtitle><date>2024-03-20</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>115</spage><epage>121</epage><pages>115-121</pages><issn>2632-8682</issn><issn>2040-2503</issn><eissn>2632-8682</eissn><eissn>2040-2511</eissn><abstract>High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a viable technique in time efficient screening, specifically for PROTAC design and biological evaluation. However, one notable limitation is the prerequisite of high yielding reactions to ensure the desired compound is indeed the compound responsible for biological activity. Herein, we report a machine learning based yield-assay deconfounder capable of deconvoluting low yield from low potency to identify false negatives. We validated this approach by identifying promising SARS-CoV-2 main protease inhibitors with nanomolar activity that rivaled potency observed from the standard D2B workflow. Furthermore, we show how our framework can be utilized in a broad, in silico screen to produce compounds of similar potency as a D2B assay. Augmenting direct-to-biology workflows with a new machine learning framework.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38516605</pmid><doi>10.1039/d3md00719g</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9616-3108</orcidid><orcidid>https://orcid.org/0000-0003-2687-0699</orcidid><orcidid>https://orcid.org/0000-0002-2999-0955</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-8682
ispartof MedChemComm, 2024-03, Vol.15 (3), p.115-121
issn 2632-8682
2040-2503
2632-8682
2040-2511
language eng
recordid cdi_crossref_primary_10_1039_D3MD00719G
source Royal Society of Chemistry Journals
subjects Biological activity
Biology
Chemistry
Learning algorithms
Machine learning
Protease inhibitors
Proteinase inhibitors
Severe acute respiratory syndrome coronavirus 2
Workflow
title Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconvoluting%20low%20yield%20from%20weak%20potency%20in%20direct-to-biology%20workflows%20with%20machine%20learning&rft.jtitle=MedChemComm&rft.au=McCorkindale,%20William&rft.date=2024-03-20&rft.volume=15&rft.issue=3&rft.spage=115&rft.epage=121&rft.pages=115-121&rft.issn=2632-8682&rft.eissn=2632-8682&rft_id=info:doi/10.1039/d3md00719g&rft_dat=%3Cproquest_cross%3E2974004345%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-d29d474f8a5e4b6d38a15fab23eef7b0bcb7bc17032ad1e84b95a06ca26891483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2968877263&rft_id=info:pmid/38516605&rfr_iscdi=true