Loading…

Dilute Gd hydroxycarbonate particles for localized spin qubit integration

Molecular spins are considered as the quantum hardware to build hybrid quantum processors in which coupling to superconducting devices would provide the means to implement the necessary coherent manipulations. As an alternative to large magnetically-dilute crystals or concentrated nano-scale deposit...

Full description

Saved in:
Bibliographic Details
Published in:Materials horizons 2023-10, Vol.1 (11), p.5214-5222
Main Authors: Tejedor, Inés, Urtizberea, Ainhoa, Natividad, Eva, Martínez, Jesús I, Gascón, Ignacio, Roubeau, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c309t-bf79da4e7dd3f813c12f55fd15b11dc5856ddfb6850ac436244dc3b36c89d7143
container_end_page 5222
container_issue 11
container_start_page 5214
container_title Materials horizons
container_volume 1
creator Tejedor, Inés
Urtizberea, Ainhoa
Natividad, Eva
Martínez, Jesús I
Gascón, Ignacio
Roubeau, Olivier
description Molecular spins are considered as the quantum hardware to build hybrid quantum processors in which coupling to superconducting devices would provide the means to implement the necessary coherent manipulations. As an alternative to large magnetically-dilute crystals or concentrated nano-scale deposits of paramagnetic molecules that have been studied so far, the use of pre-formed sub-micronic spherical particles of a doped Gd@Y hydroxycarbonate is evaluated here. Particles with an adjustable number of spin carriers are prepared through the control of both particle size and doping. Bulk magnetic properties and continuous wave and time-domain-EPR spectroscopy show that the Gd spins in these particles are potential qubits with robust quantum coherence. Monolayers of densely-packed particles are then formed interfacially and transferred successfully to the surface of Nb superconducting resonators. Alternatively, these particles are disposed at controlled localizations as isolated groups of a few particles through Dip-Pen Nanolithography using colloidal organic dispersions as ink. Altogether, this study offers new material and methodologies relevant to the development of viable hybrid quantum processors. Sub-micronic Gd@YOHCO 3 particles are valid spin qubit carriers with an adjustable number of qubits per particle that can be integrated with nanoscopic control into superconducting devices for the development of viable hybrid quantum processors.
doi_str_mv 10.1039/d3mh01201h
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3MH01201H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884102887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-bf79da4e7dd3f813c12f55fd15b11dc5856ddfb6850ac436244dc3b36c89d7143</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AgCo65F9-Fgi8iVC9N0rSPsuk2mPiizyXND5fRNV2SgvOvtzqZ4MvdcXw4ji9ClxjuMJDyXpHtGnAGeH2CRhkwnOaEsdPjTPk5moSwAQBMKIMCRmg5s00fdTJXyXqvvPvYS-Fr14ph1wkfrWx0SIzzSeOkaOynVknobJvs-trGxLZRv3sRrWsv0JkRTdCT3z5Gb0-Pr9NFunqZL6cPq1QSKGNaG14qQTVXipgCE4kzw5hRmNUYK8kKlitl6rxgICQleUapkqQmuSxKxTElY3RzuNt5t-t1iNXWBqmbRrTa9aHKijznrORABnr9j25c79vhu0EVFMNQ-aBuD0p6F4LXpuq83Qq_rzBU38FWM_K8-Al2MeCrA_ZBHt1f8OQLAW50jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884102887</pqid></control><display><type>article</type><title>Dilute Gd hydroxycarbonate particles for localized spin qubit integration</title><source>Royal Society of Chemistry</source><creator>Tejedor, Inés ; Urtizberea, Ainhoa ; Natividad, Eva ; Martínez, Jesús I ; Gascón, Ignacio ; Roubeau, Olivier</creator><creatorcontrib>Tejedor, Inés ; Urtizberea, Ainhoa ; Natividad, Eva ; Martínez, Jesús I ; Gascón, Ignacio ; Roubeau, Olivier</creatorcontrib><description>Molecular spins are considered as the quantum hardware to build hybrid quantum processors in which coupling to superconducting devices would provide the means to implement the necessary coherent manipulations. As an alternative to large magnetically-dilute crystals or concentrated nano-scale deposits of paramagnetic molecules that have been studied so far, the use of pre-formed sub-micronic spherical particles of a doped Gd@Y hydroxycarbonate is evaluated here. Particles with an adjustable number of spin carriers are prepared through the control of both particle size and doping. Bulk magnetic properties and continuous wave and time-domain-EPR spectroscopy show that the Gd spins in these particles are potential qubits with robust quantum coherence. Monolayers of densely-packed particles are then formed interfacially and transferred successfully to the surface of Nb superconducting resonators. Alternatively, these particles are disposed at controlled localizations as isolated groups of a few particles through Dip-Pen Nanolithography using colloidal organic dispersions as ink. Altogether, this study offers new material and methodologies relevant to the development of viable hybrid quantum processors. Sub-micronic Gd@YOHCO 3 particles are valid spin qubit carriers with an adjustable number of qubits per particle that can be integrated with nanoscopic control into superconducting devices for the development of viable hybrid quantum processors.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d3mh01201h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Continuous radiation ; Dilution ; Dispersions ; Gadolinium ; Magnetic properties ; Nanolithography ; Particle spin ; Processors ; Quantum phenomena ; Qubits (quantum computing) ; Superconducting devices ; Superconductivity</subject><ispartof>Materials horizons, 2023-10, Vol.1 (11), p.5214-5222</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-bf79da4e7dd3f813c12f55fd15b11dc5856ddfb6850ac436244dc3b36c89d7143</cites><orcidid>0000-0002-5406-3280 ; 0000-0003-2095-5843 ; 0000-0002-3492-6456 ; 0000-0003-2553-0633 ; 0000-0002-8424-9780 ; 0000-0002-8267-9306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tejedor, Inés</creatorcontrib><creatorcontrib>Urtizberea, Ainhoa</creatorcontrib><creatorcontrib>Natividad, Eva</creatorcontrib><creatorcontrib>Martínez, Jesús I</creatorcontrib><creatorcontrib>Gascón, Ignacio</creatorcontrib><creatorcontrib>Roubeau, Olivier</creatorcontrib><title>Dilute Gd hydroxycarbonate particles for localized spin qubit integration</title><title>Materials horizons</title><description>Molecular spins are considered as the quantum hardware to build hybrid quantum processors in which coupling to superconducting devices would provide the means to implement the necessary coherent manipulations. As an alternative to large magnetically-dilute crystals or concentrated nano-scale deposits of paramagnetic molecules that have been studied so far, the use of pre-formed sub-micronic spherical particles of a doped Gd@Y hydroxycarbonate is evaluated here. Particles with an adjustable number of spin carriers are prepared through the control of both particle size and doping. Bulk magnetic properties and continuous wave and time-domain-EPR spectroscopy show that the Gd spins in these particles are potential qubits with robust quantum coherence. Monolayers of densely-packed particles are then formed interfacially and transferred successfully to the surface of Nb superconducting resonators. Alternatively, these particles are disposed at controlled localizations as isolated groups of a few particles through Dip-Pen Nanolithography using colloidal organic dispersions as ink. Altogether, this study offers new material and methodologies relevant to the development of viable hybrid quantum processors. Sub-micronic Gd@YOHCO 3 particles are valid spin qubit carriers with an adjustable number of qubits per particle that can be integrated with nanoscopic control into superconducting devices for the development of viable hybrid quantum processors.</description><subject>Continuous radiation</subject><subject>Dilution</subject><subject>Dispersions</subject><subject>Gadolinium</subject><subject>Magnetic properties</subject><subject>Nanolithography</subject><subject>Particle spin</subject><subject>Processors</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Superconducting devices</subject><subject>Superconductivity</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0N9LwzAQB_AgCo65F9-Fgi8iVC9N0rSPsuk2mPiizyXND5fRNV2SgvOvtzqZ4MvdcXw4ji9ClxjuMJDyXpHtGnAGeH2CRhkwnOaEsdPjTPk5moSwAQBMKIMCRmg5s00fdTJXyXqvvPvYS-Fr14ph1wkfrWx0SIzzSeOkaOynVknobJvs-trGxLZRv3sRrWsv0JkRTdCT3z5Gb0-Pr9NFunqZL6cPq1QSKGNaG14qQTVXipgCE4kzw5hRmNUYK8kKlitl6rxgICQleUapkqQmuSxKxTElY3RzuNt5t-t1iNXWBqmbRrTa9aHKijznrORABnr9j25c79vhu0EVFMNQ-aBuD0p6F4LXpuq83Qq_rzBU38FWM_K8-Al2MeCrA_ZBHt1f8OQLAW50jg</recordid><startdate>20231030</startdate><enddate>20231030</enddate><creator>Tejedor, Inés</creator><creator>Urtizberea, Ainhoa</creator><creator>Natividad, Eva</creator><creator>Martínez, Jesús I</creator><creator>Gascón, Ignacio</creator><creator>Roubeau, Olivier</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5406-3280</orcidid><orcidid>https://orcid.org/0000-0003-2095-5843</orcidid><orcidid>https://orcid.org/0000-0002-3492-6456</orcidid><orcidid>https://orcid.org/0000-0003-2553-0633</orcidid><orcidid>https://orcid.org/0000-0002-8424-9780</orcidid><orcidid>https://orcid.org/0000-0002-8267-9306</orcidid></search><sort><creationdate>20231030</creationdate><title>Dilute Gd hydroxycarbonate particles for localized spin qubit integration</title><author>Tejedor, Inés ; Urtizberea, Ainhoa ; Natividad, Eva ; Martínez, Jesús I ; Gascón, Ignacio ; Roubeau, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-bf79da4e7dd3f813c12f55fd15b11dc5856ddfb6850ac436244dc3b36c89d7143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Continuous radiation</topic><topic>Dilution</topic><topic>Dispersions</topic><topic>Gadolinium</topic><topic>Magnetic properties</topic><topic>Nanolithography</topic><topic>Particle spin</topic><topic>Processors</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Superconducting devices</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tejedor, Inés</creatorcontrib><creatorcontrib>Urtizberea, Ainhoa</creatorcontrib><creatorcontrib>Natividad, Eva</creatorcontrib><creatorcontrib>Martínez, Jesús I</creatorcontrib><creatorcontrib>Gascón, Ignacio</creatorcontrib><creatorcontrib>Roubeau, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tejedor, Inés</au><au>Urtizberea, Ainhoa</au><au>Natividad, Eva</au><au>Martínez, Jesús I</au><au>Gascón, Ignacio</au><au>Roubeau, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dilute Gd hydroxycarbonate particles for localized spin qubit integration</atitle><jtitle>Materials horizons</jtitle><date>2023-10-30</date><risdate>2023</risdate><volume>1</volume><issue>11</issue><spage>5214</spage><epage>5222</epage><pages>5214-5222</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Molecular spins are considered as the quantum hardware to build hybrid quantum processors in which coupling to superconducting devices would provide the means to implement the necessary coherent manipulations. As an alternative to large magnetically-dilute crystals or concentrated nano-scale deposits of paramagnetic molecules that have been studied so far, the use of pre-formed sub-micronic spherical particles of a doped Gd@Y hydroxycarbonate is evaluated here. Particles with an adjustable number of spin carriers are prepared through the control of both particle size and doping. Bulk magnetic properties and continuous wave and time-domain-EPR spectroscopy show that the Gd spins in these particles are potential qubits with robust quantum coherence. Monolayers of densely-packed particles are then formed interfacially and transferred successfully to the surface of Nb superconducting resonators. Alternatively, these particles are disposed at controlled localizations as isolated groups of a few particles through Dip-Pen Nanolithography using colloidal organic dispersions as ink. Altogether, this study offers new material and methodologies relevant to the development of viable hybrid quantum processors. Sub-micronic Gd@YOHCO 3 particles are valid spin qubit carriers with an adjustable number of qubits per particle that can be integrated with nanoscopic control into superconducting devices for the development of viable hybrid quantum processors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3mh01201h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5406-3280</orcidid><orcidid>https://orcid.org/0000-0003-2095-5843</orcidid><orcidid>https://orcid.org/0000-0002-3492-6456</orcidid><orcidid>https://orcid.org/0000-0003-2553-0633</orcidid><orcidid>https://orcid.org/0000-0002-8424-9780</orcidid><orcidid>https://orcid.org/0000-0002-8267-9306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2023-10, Vol.1 (11), p.5214-5222
issn 2051-6347
2051-6355
language eng
recordid cdi_crossref_primary_10_1039_D3MH01201H
source Royal Society of Chemistry
subjects Continuous radiation
Dilution
Dispersions
Gadolinium
Magnetic properties
Nanolithography
Particle spin
Processors
Quantum phenomena
Qubits (quantum computing)
Superconducting devices
Superconductivity
title Dilute Gd hydroxycarbonate particles for localized spin qubit integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dilute%20Gd%20hydroxycarbonate%20particles%20for%20localized%20spin%20qubit%20integration&rft.jtitle=Materials%20horizons&rft.au=Tejedor,%20In%C3%A9s&rft.date=2023-10-30&rft.volume=1&rft.issue=11&rft.spage=5214&rft.epage=5222&rft.pages=5214-5222&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d3mh01201h&rft_dat=%3Cproquest_cross%3E2884102887%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-bf79da4e7dd3f813c12f55fd15b11dc5856ddfb6850ac436244dc3b36c89d7143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884102887&rft_id=info:pmid/&rfr_iscdi=true