Loading…

High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution

The development of inexpensive and efficient oxygen evolution reaction (OER) catalysts is crucial for the large-scale application of water splitting to produce green hydrogen. Different from traditional preparation methods, in this study, the electronic structure of ternary NCM (LiNi 0.94 Co 0.05 Mn...

Full description

Saved in:
Bibliographic Details
Published in:Materials chemistry frontiers 2023-11, Vol.7 (22), p.5868-5878
Main Authors: Li, Shujing, Zhu, Xiaoming, Wang, Xiaohan, Luo, Wenshu, Yu, Xu, Guo, Qiuyun, Song, Kunming, Tian, Han, Cui, Xiangzhi, Shi, Jianlin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193
cites cdi_FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193
container_end_page 5878
container_issue 22
container_start_page 5868
container_title Materials chemistry frontiers
container_volume 7
creator Li, Shujing
Zhu, Xiaoming
Wang, Xiaohan
Luo, Wenshu
Yu, Xu
Guo, Qiuyun
Song, Kunming
Tian, Han
Cui, Xiangzhi
Shi, Jianlin
description The development of inexpensive and efficient oxygen evolution reaction (OER) catalysts is crucial for the large-scale application of water splitting to produce green hydrogen. Different from traditional preparation methods, in this study, the electronic structure of ternary NCM (LiNi 0.94 Co 0.05 Mn 0.01 O 2 ) was directly reconstructed from the cathode of spent lithium-ion batteries through electrochemical de-lithiation technology to obtain efficient OER catalysts. The optimized NCM94-1V-90 min exhibits a low overpotential of 270 mV at 10 mA cm −2 along with excellent stability for a 300 h durability test. The high OER performance is attributed to the electronic structure reconstruction and microstructure transformation during electrochemical de-lithiation, which generates a large number of high-valence Ni 3+ and O vacancies as well as structural fragmentation, respectively, supplying more active sites and enhancing electronic conductivity, also confirmed by the density functional theory (DFT) theoretical calculation. The strategy of electrochemical de-lithiation technology to improve the OER electrocatalytic performance not only can recycle the cathode materials of lithium-ion batteries, but can also be extended to other electrode materials of spent batteries.
doi_str_mv 10.1039/D3QM00633F
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3QM00633F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3QM00633F</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOOZe_AV5Vqo3zdK0jzLtJkxF2HtJb27WSNdI0w3773Uq6NM58B3Ow8fYpYAbAbK4vZevTwCZlOUJm6Sg0kQoqU__9XM2i_ENAITWqQQxYc3Kb5vkYFrqkPiz5_KaY-ji0O9x8KHjprM8Dqb2rR9GXo-cWsKhD9jQzqNpuaXkCzXefM_rEOLguy0PH-OWOk6H0O6P5IKdOdNGmv3mlG3Kh81ilaxflo-Lu3WCOisTS5lAkSmN81ylNjWusAXOFaEDcrlMCaRySuaUoQUS1pKzuUOrMc-0KOSUXf3cYh9i7MlV773fmX6sBFRHS9WfJfkJ5xFcbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Li, Shujing ; Zhu, Xiaoming ; Wang, Xiaohan ; Luo, Wenshu ; Yu, Xu ; Guo, Qiuyun ; Song, Kunming ; Tian, Han ; Cui, Xiangzhi ; Shi, Jianlin</creator><creatorcontrib>Li, Shujing ; Zhu, Xiaoming ; Wang, Xiaohan ; Luo, Wenshu ; Yu, Xu ; Guo, Qiuyun ; Song, Kunming ; Tian, Han ; Cui, Xiangzhi ; Shi, Jianlin</creatorcontrib><description>The development of inexpensive and efficient oxygen evolution reaction (OER) catalysts is crucial for the large-scale application of water splitting to produce green hydrogen. Different from traditional preparation methods, in this study, the electronic structure of ternary NCM (LiNi 0.94 Co 0.05 Mn 0.01 O 2 ) was directly reconstructed from the cathode of spent lithium-ion batteries through electrochemical de-lithiation technology to obtain efficient OER catalysts. The optimized NCM94-1V-90 min exhibits a low overpotential of 270 mV at 10 mA cm −2 along with excellent stability for a 300 h durability test. The high OER performance is attributed to the electronic structure reconstruction and microstructure transformation during electrochemical de-lithiation, which generates a large number of high-valence Ni 3+ and O vacancies as well as structural fragmentation, respectively, supplying more active sites and enhancing electronic conductivity, also confirmed by the density functional theory (DFT) theoretical calculation. The strategy of electrochemical de-lithiation technology to improve the OER electrocatalytic performance not only can recycle the cathode materials of lithium-ion batteries, but can also be extended to other electrode materials of spent batteries.</description><identifier>ISSN: 2052-1537</identifier><identifier>EISSN: 2052-1537</identifier><identifier>DOI: 10.1039/D3QM00633F</identifier><language>eng</language><ispartof>Materials chemistry frontiers, 2023-11, Vol.7 (22), p.5868-5878</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193</citedby><cites>FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193</cites><orcidid>0000-0001-8790-195X ; 0000-0002-7111-5599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Shujing</creatorcontrib><creatorcontrib>Zhu, Xiaoming</creatorcontrib><creatorcontrib>Wang, Xiaohan</creatorcontrib><creatorcontrib>Luo, Wenshu</creatorcontrib><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Guo, Qiuyun</creatorcontrib><creatorcontrib>Song, Kunming</creatorcontrib><creatorcontrib>Tian, Han</creatorcontrib><creatorcontrib>Cui, Xiangzhi</creatorcontrib><creatorcontrib>Shi, Jianlin</creatorcontrib><title>High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution</title><title>Materials chemistry frontiers</title><description>The development of inexpensive and efficient oxygen evolution reaction (OER) catalysts is crucial for the large-scale application of water splitting to produce green hydrogen. Different from traditional preparation methods, in this study, the electronic structure of ternary NCM (LiNi 0.94 Co 0.05 Mn 0.01 O 2 ) was directly reconstructed from the cathode of spent lithium-ion batteries through electrochemical de-lithiation technology to obtain efficient OER catalysts. The optimized NCM94-1V-90 min exhibits a low overpotential of 270 mV at 10 mA cm −2 along with excellent stability for a 300 h durability test. The high OER performance is attributed to the electronic structure reconstruction and microstructure transformation during electrochemical de-lithiation, which generates a large number of high-valence Ni 3+ and O vacancies as well as structural fragmentation, respectively, supplying more active sites and enhancing electronic conductivity, also confirmed by the density functional theory (DFT) theoretical calculation. The strategy of electrochemical de-lithiation technology to improve the OER electrocatalytic performance not only can recycle the cathode materials of lithium-ion batteries, but can also be extended to other electrode materials of spent batteries.</description><issn>2052-1537</issn><issn>2052-1537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYMoOOZe_AV5Vqo3zdK0jzLtJkxF2HtJb27WSNdI0w3773Uq6NM58B3Ow8fYpYAbAbK4vZevTwCZlOUJm6Sg0kQoqU__9XM2i_ENAITWqQQxYc3Kb5vkYFrqkPiz5_KaY-ji0O9x8KHjprM8Dqb2rR9GXo-cWsKhD9jQzqNpuaXkCzXefM_rEOLguy0PH-OWOk6H0O6P5IKdOdNGmv3mlG3Kh81ilaxflo-Lu3WCOisTS5lAkSmN81ylNjWusAXOFaEDcrlMCaRySuaUoQUS1pKzuUOrMc-0KOSUXf3cYh9i7MlV773fmX6sBFRHS9WfJfkJ5xFcbg</recordid><startdate>20231106</startdate><enddate>20231106</enddate><creator>Li, Shujing</creator><creator>Zhu, Xiaoming</creator><creator>Wang, Xiaohan</creator><creator>Luo, Wenshu</creator><creator>Yu, Xu</creator><creator>Guo, Qiuyun</creator><creator>Song, Kunming</creator><creator>Tian, Han</creator><creator>Cui, Xiangzhi</creator><creator>Shi, Jianlin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8790-195X</orcidid><orcidid>https://orcid.org/0000-0002-7111-5599</orcidid></search><sort><creationdate>20231106</creationdate><title>High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution</title><author>Li, Shujing ; Zhu, Xiaoming ; Wang, Xiaohan ; Luo, Wenshu ; Yu, Xu ; Guo, Qiuyun ; Song, Kunming ; Tian, Han ; Cui, Xiangzhi ; Shi, Jianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shujing</creatorcontrib><creatorcontrib>Zhu, Xiaoming</creatorcontrib><creatorcontrib>Wang, Xiaohan</creatorcontrib><creatorcontrib>Luo, Wenshu</creatorcontrib><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Guo, Qiuyun</creatorcontrib><creatorcontrib>Song, Kunming</creatorcontrib><creatorcontrib>Tian, Han</creatorcontrib><creatorcontrib>Cui, Xiangzhi</creatorcontrib><creatorcontrib>Shi, Jianlin</creatorcontrib><collection>CrossRef</collection><jtitle>Materials chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shujing</au><au>Zhu, Xiaoming</au><au>Wang, Xiaohan</au><au>Luo, Wenshu</au><au>Yu, Xu</au><au>Guo, Qiuyun</au><au>Song, Kunming</au><au>Tian, Han</au><au>Cui, Xiangzhi</au><au>Shi, Jianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution</atitle><jtitle>Materials chemistry frontiers</jtitle><date>2023-11-06</date><risdate>2023</risdate><volume>7</volume><issue>22</issue><spage>5868</spage><epage>5878</epage><pages>5868-5878</pages><issn>2052-1537</issn><eissn>2052-1537</eissn><abstract>The development of inexpensive and efficient oxygen evolution reaction (OER) catalysts is crucial for the large-scale application of water splitting to produce green hydrogen. Different from traditional preparation methods, in this study, the electronic structure of ternary NCM (LiNi 0.94 Co 0.05 Mn 0.01 O 2 ) was directly reconstructed from the cathode of spent lithium-ion batteries through electrochemical de-lithiation technology to obtain efficient OER catalysts. The optimized NCM94-1V-90 min exhibits a low overpotential of 270 mV at 10 mA cm −2 along with excellent stability for a 300 h durability test. The high OER performance is attributed to the electronic structure reconstruction and microstructure transformation during electrochemical de-lithiation, which generates a large number of high-valence Ni 3+ and O vacancies as well as structural fragmentation, respectively, supplying more active sites and enhancing electronic conductivity, also confirmed by the density functional theory (DFT) theoretical calculation. The strategy of electrochemical de-lithiation technology to improve the OER electrocatalytic performance not only can recycle the cathode materials of lithium-ion batteries, but can also be extended to other electrode materials of spent batteries.</abstract><doi>10.1039/D3QM00633F</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8790-195X</orcidid><orcidid>https://orcid.org/0000-0002-7111-5599</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-1537
ispartof Materials chemistry frontiers, 2023-11, Vol.7 (22), p.5868-5878
issn 2052-1537
2052-1537
language eng
recordid cdi_crossref_primary_10_1039_D3QM00633F
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
title High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-valence%20Ni%203+%20construction%20and%20stability%20by%20electrochemical%20de-lithiation%20boosting%20oxygen%20evolution&rft.jtitle=Materials%20chemistry%20frontiers&rft.au=Li,%20Shujing&rft.date=2023-11-06&rft.volume=7&rft.issue=22&rft.spage=5868&rft.epage=5878&rft.pages=5868-5878&rft.issn=2052-1537&rft.eissn=2052-1537&rft_id=info:doi/10.1039/D3QM00633F&rft_dat=%3Ccrossref%3E10_1039_D3QM00633F%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true