Loading…
High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution
The development of inexpensive and efficient oxygen evolution reaction (OER) catalysts is crucial for the large-scale application of water splitting to produce green hydrogen. Different from traditional preparation methods, in this study, the electronic structure of ternary NCM (LiNi 0.94 Co 0.05 Mn...
Saved in:
Published in: | Materials chemistry frontiers 2023-11, Vol.7 (22), p.5868-5878 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193 |
---|---|
cites | cdi_FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193 |
container_end_page | 5878 |
container_issue | 22 |
container_start_page | 5868 |
container_title | Materials chemistry frontiers |
container_volume | 7 |
creator | Li, Shujing Zhu, Xiaoming Wang, Xiaohan Luo, Wenshu Yu, Xu Guo, Qiuyun Song, Kunming Tian, Han Cui, Xiangzhi Shi, Jianlin |
description | The development of inexpensive and efficient oxygen evolution reaction (OER) catalysts is crucial for the large-scale application of water splitting to produce green hydrogen. Different from traditional preparation methods, in this study, the electronic structure of ternary NCM (LiNi
0.94
Co
0.05
Mn
0.01
O
2
) was directly reconstructed from the cathode of spent lithium-ion batteries through electrochemical de-lithiation technology to obtain efficient OER catalysts. The optimized NCM94-1V-90 min exhibits a low overpotential of 270 mV at 10 mA cm
−2
along with excellent stability for a 300 h durability test. The high OER performance is attributed to the electronic structure reconstruction and microstructure transformation during electrochemical de-lithiation, which generates a large number of high-valence Ni
3+
and O vacancies as well as structural fragmentation, respectively, supplying more active sites and enhancing electronic conductivity, also confirmed by the density functional theory (DFT) theoretical calculation. The strategy of electrochemical de-lithiation technology to improve the OER electrocatalytic performance not only can recycle the cathode materials of lithium-ion batteries, but can also be extended to other electrode materials of spent batteries. |
doi_str_mv | 10.1039/D3QM00633F |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3QM00633F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3QM00633F</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOOZe_AV5Vqo3zdK0jzLtJkxF2HtJb27WSNdI0w3773Uq6NM58B3Ow8fYpYAbAbK4vZevTwCZlOUJm6Sg0kQoqU__9XM2i_ENAITWqQQxYc3Kb5vkYFrqkPiz5_KaY-ji0O9x8KHjprM8Dqb2rR9GXo-cWsKhD9jQzqNpuaXkCzXefM_rEOLguy0PH-OWOk6H0O6P5IKdOdNGmv3mlG3Kh81ilaxflo-Lu3WCOisTS5lAkSmN81ylNjWusAXOFaEDcrlMCaRySuaUoQUS1pKzuUOrMc-0KOSUXf3cYh9i7MlV773fmX6sBFRHS9WfJfkJ5xFcbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Li, Shujing ; Zhu, Xiaoming ; Wang, Xiaohan ; Luo, Wenshu ; Yu, Xu ; Guo, Qiuyun ; Song, Kunming ; Tian, Han ; Cui, Xiangzhi ; Shi, Jianlin</creator><creatorcontrib>Li, Shujing ; Zhu, Xiaoming ; Wang, Xiaohan ; Luo, Wenshu ; Yu, Xu ; Guo, Qiuyun ; Song, Kunming ; Tian, Han ; Cui, Xiangzhi ; Shi, Jianlin</creatorcontrib><description>The development of inexpensive and efficient oxygen evolution reaction (OER) catalysts is crucial for the large-scale application of water splitting to produce green hydrogen. Different from traditional preparation methods, in this study, the electronic structure of ternary NCM (LiNi
0.94
Co
0.05
Mn
0.01
O
2
) was directly reconstructed from the cathode of spent lithium-ion batteries through electrochemical de-lithiation technology to obtain efficient OER catalysts. The optimized NCM94-1V-90 min exhibits a low overpotential of 270 mV at 10 mA cm
−2
along with excellent stability for a 300 h durability test. The high OER performance is attributed to the electronic structure reconstruction and microstructure transformation during electrochemical de-lithiation, which generates a large number of high-valence Ni
3+
and O vacancies as well as structural fragmentation, respectively, supplying more active sites and enhancing electronic conductivity, also confirmed by the density functional theory (DFT) theoretical calculation. The strategy of electrochemical de-lithiation technology to improve the OER electrocatalytic performance not only can recycle the cathode materials of lithium-ion batteries, but can also be extended to other electrode materials of spent batteries.</description><identifier>ISSN: 2052-1537</identifier><identifier>EISSN: 2052-1537</identifier><identifier>DOI: 10.1039/D3QM00633F</identifier><language>eng</language><ispartof>Materials chemistry frontiers, 2023-11, Vol.7 (22), p.5868-5878</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193</citedby><cites>FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193</cites><orcidid>0000-0001-8790-195X ; 0000-0002-7111-5599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Shujing</creatorcontrib><creatorcontrib>Zhu, Xiaoming</creatorcontrib><creatorcontrib>Wang, Xiaohan</creatorcontrib><creatorcontrib>Luo, Wenshu</creatorcontrib><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Guo, Qiuyun</creatorcontrib><creatorcontrib>Song, Kunming</creatorcontrib><creatorcontrib>Tian, Han</creatorcontrib><creatorcontrib>Cui, Xiangzhi</creatorcontrib><creatorcontrib>Shi, Jianlin</creatorcontrib><title>High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution</title><title>Materials chemistry frontiers</title><description>The development of inexpensive and efficient oxygen evolution reaction (OER) catalysts is crucial for the large-scale application of water splitting to produce green hydrogen. Different from traditional preparation methods, in this study, the electronic structure of ternary NCM (LiNi
0.94
Co
0.05
Mn
0.01
O
2
) was directly reconstructed from the cathode of spent lithium-ion batteries through electrochemical de-lithiation technology to obtain efficient OER catalysts. The optimized NCM94-1V-90 min exhibits a low overpotential of 270 mV at 10 mA cm
−2
along with excellent stability for a 300 h durability test. The high OER performance is attributed to the electronic structure reconstruction and microstructure transformation during electrochemical de-lithiation, which generates a large number of high-valence Ni
3+
and O vacancies as well as structural fragmentation, respectively, supplying more active sites and enhancing electronic conductivity, also confirmed by the density functional theory (DFT) theoretical calculation. The strategy of electrochemical de-lithiation technology to improve the OER electrocatalytic performance not only can recycle the cathode materials of lithium-ion batteries, but can also be extended to other electrode materials of spent batteries.</description><issn>2052-1537</issn><issn>2052-1537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYMoOOZe_AV5Vqo3zdK0jzLtJkxF2HtJb27WSNdI0w3773Uq6NM58B3Ow8fYpYAbAbK4vZevTwCZlOUJm6Sg0kQoqU__9XM2i_ENAITWqQQxYc3Kb5vkYFrqkPiz5_KaY-ji0O9x8KHjprM8Dqb2rR9GXo-cWsKhD9jQzqNpuaXkCzXefM_rEOLguy0PH-OWOk6H0O6P5IKdOdNGmv3mlG3Kh81ilaxflo-Lu3WCOisTS5lAkSmN81ylNjWusAXOFaEDcrlMCaRySuaUoQUS1pKzuUOrMc-0KOSUXf3cYh9i7MlV773fmX6sBFRHS9WfJfkJ5xFcbg</recordid><startdate>20231106</startdate><enddate>20231106</enddate><creator>Li, Shujing</creator><creator>Zhu, Xiaoming</creator><creator>Wang, Xiaohan</creator><creator>Luo, Wenshu</creator><creator>Yu, Xu</creator><creator>Guo, Qiuyun</creator><creator>Song, Kunming</creator><creator>Tian, Han</creator><creator>Cui, Xiangzhi</creator><creator>Shi, Jianlin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8790-195X</orcidid><orcidid>https://orcid.org/0000-0002-7111-5599</orcidid></search><sort><creationdate>20231106</creationdate><title>High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution</title><author>Li, Shujing ; Zhu, Xiaoming ; Wang, Xiaohan ; Luo, Wenshu ; Yu, Xu ; Guo, Qiuyun ; Song, Kunming ; Tian, Han ; Cui, Xiangzhi ; Shi, Jianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shujing</creatorcontrib><creatorcontrib>Zhu, Xiaoming</creatorcontrib><creatorcontrib>Wang, Xiaohan</creatorcontrib><creatorcontrib>Luo, Wenshu</creatorcontrib><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Guo, Qiuyun</creatorcontrib><creatorcontrib>Song, Kunming</creatorcontrib><creatorcontrib>Tian, Han</creatorcontrib><creatorcontrib>Cui, Xiangzhi</creatorcontrib><creatorcontrib>Shi, Jianlin</creatorcontrib><collection>CrossRef</collection><jtitle>Materials chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shujing</au><au>Zhu, Xiaoming</au><au>Wang, Xiaohan</au><au>Luo, Wenshu</au><au>Yu, Xu</au><au>Guo, Qiuyun</au><au>Song, Kunming</au><au>Tian, Han</au><au>Cui, Xiangzhi</au><au>Shi, Jianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution</atitle><jtitle>Materials chemistry frontiers</jtitle><date>2023-11-06</date><risdate>2023</risdate><volume>7</volume><issue>22</issue><spage>5868</spage><epage>5878</epage><pages>5868-5878</pages><issn>2052-1537</issn><eissn>2052-1537</eissn><abstract>The development of inexpensive and efficient oxygen evolution reaction (OER) catalysts is crucial for the large-scale application of water splitting to produce green hydrogen. Different from traditional preparation methods, in this study, the electronic structure of ternary NCM (LiNi
0.94
Co
0.05
Mn
0.01
O
2
) was directly reconstructed from the cathode of spent lithium-ion batteries through electrochemical de-lithiation technology to obtain efficient OER catalysts. The optimized NCM94-1V-90 min exhibits a low overpotential of 270 mV at 10 mA cm
−2
along with excellent stability for a 300 h durability test. The high OER performance is attributed to the electronic structure reconstruction and microstructure transformation during electrochemical de-lithiation, which generates a large number of high-valence Ni
3+
and O vacancies as well as structural fragmentation, respectively, supplying more active sites and enhancing electronic conductivity, also confirmed by the density functional theory (DFT) theoretical calculation. The strategy of electrochemical de-lithiation technology to improve the OER electrocatalytic performance not only can recycle the cathode materials of lithium-ion batteries, but can also be extended to other electrode materials of spent batteries.</abstract><doi>10.1039/D3QM00633F</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8790-195X</orcidid><orcidid>https://orcid.org/0000-0002-7111-5599</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1537 |
ispartof | Materials chemistry frontiers, 2023-11, Vol.7 (22), p.5868-5878 |
issn | 2052-1537 2052-1537 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3QM00633F |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
title | High-valence Ni 3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-valence%20Ni%203+%20construction%20and%20stability%20by%20electrochemical%20de-lithiation%20boosting%20oxygen%20evolution&rft.jtitle=Materials%20chemistry%20frontiers&rft.au=Li,%20Shujing&rft.date=2023-11-06&rft.volume=7&rft.issue=22&rft.spage=5868&rft.epage=5878&rft.pages=5868-5878&rft.issn=2052-1537&rft.eissn=2052-1537&rft_id=info:doi/10.1039/D3QM00633F&rft_dat=%3Ccrossref%3E10_1039_D3QM00633F%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c76F-de61c1657c4852d2af9d9c45ecf0ef832e035f538e6cd0e1ddefd8fcd7c867193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |