Loading…
Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells
Waste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve th...
Saved in:
Published in: | Chemical science (Cambridge) 2024-05, Vol.15 (18), p.6958-6964 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-3e07f9d3a2d4e624ad20fcd8f6b3d09296c6be1b7204754b2883a1cd5ac364633 |
container_end_page | 6964 |
container_issue | 18 |
container_start_page | 6958 |
container_title | Chemical science (Cambridge) |
container_volume | 15 |
creator | Laws, Kristine Buckingham, Mark A Aldous, Leigh |
description | Waste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve this; entropy-driven redox reactions allow them to act as liquid thermoelectrics. However, excellent electrocatalysis at the electrode surface is required for optimum conversion efficiency. Serendipitous observation of Nafion-based electrocatalysis prompted the exploration of electrostatically charged self-assembled monolayers (SAMs) inside a thermocell. Both electrostatic electrocatalysis and improved electrode stability were observed; in an aqueous K
3
[Fe(CN)
6
]/K
4
[Fe(CN)
6
]-based cell, modification with (3-trimethylammonium bromide)thiopropane resulted in higher electrical power, and protection against [Fe(CN)
6
]
3−/4−
-induced gold passivation, relative to bare gold. Molecular-based electrostatic electrocatalysis could be an alternative to precious metal-based nanomaterial electrocatalysis, and could be integrated with (nano)carbon-based electrodes to further enhance the ability of thermogalvanic and other electrochemical energy conversion devices,
e.g.
redox flow batteries.
Thermogalvanic cells can convert temperature gradients (
e.g.
waste heat) into electricity; here we demonstrate how electrostatically charged self-assembled monolayers can act as molecular electrocatalysts, plus reduce electrode passivation. |
doi_str_mv | 10.1039/d3sc06766a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3SC06766A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051831173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-3e07f9d3a2d4e624ad20fcd8f6b3d09296c6be1b7204754b2883a1cd5ac364633</originalsourceid><addsrcrecordid>eNpdks1r3DAQxUVpaUKSS-8thl5KwKk-bMk-lbBN2kKgh7RnMZbGWQdZSiU5sP99tdnN9kMXScxPj3nzRMgbRi8YFf1HK5KhUkkJL8gxpw2rZSv6l4czp0fkLKV7WpYQrOXqNTkSneJtS9UxWW7RjTWkhPPg0FZz8MHBBmOqxhArdGhyDClDnszzzUAGt0lTqsDbCv0avClP91WLVcGHyU15U02-ymuMc7gD9wi-aBh0Lp2SVyO4hGf7_YT8vL76sfpa33z_8m11eVMb0XW5FkjV2FsB3DYoeQOW09HYbpSDsLTnvTRyQDao4lW1zcC7TgAztgUjZCOFOCGfdroPyzCjNehzBKcf4jRD3OgAk_634qe1vguPmjGqVKtUUfiwV4jh14Ip63lKWw_gMSxJC1qmrXjD-4K-_w-9D0v0xd-WYp1gTG1bOt9Rpow1RRwP3TCqt4nqz-J29ZToZYHf_d3_AX3OrwBvd0BM5lD98yXEb_ZFqIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051831173</pqid></control><display><type>article</type><title>Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells</title><source>PubMed Central</source><creator>Laws, Kristine ; Buckingham, Mark A ; Aldous, Leigh</creator><creatorcontrib>Laws, Kristine ; Buckingham, Mark A ; Aldous, Leigh</creatorcontrib><description>Waste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve this; entropy-driven redox reactions allow them to act as liquid thermoelectrics. However, excellent electrocatalysis at the electrode surface is required for optimum conversion efficiency. Serendipitous observation of Nafion-based electrocatalysis prompted the exploration of electrostatically charged self-assembled monolayers (SAMs) inside a thermocell. Both electrostatic electrocatalysis and improved electrode stability were observed; in an aqueous K
3
[Fe(CN)
6
]/K
4
[Fe(CN)
6
]-based cell, modification with (3-trimethylammonium bromide)thiopropane resulted in higher electrical power, and protection against [Fe(CN)
6
]
3−/4−
-induced gold passivation, relative to bare gold. Molecular-based electrostatic electrocatalysis could be an alternative to precious metal-based nanomaterial electrocatalysis, and could be integrated with (nano)carbon-based electrodes to further enhance the ability of thermogalvanic and other electrochemical energy conversion devices,
e.g.
redox flow batteries.
Thermogalvanic cells can convert temperature gradients (
e.g.
waste heat) into electricity; here we demonstrate how electrostatically charged self-assembled monolayers can act as molecular electrocatalysts, plus reduce electrode passivation.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc06766a</identifier><identifier>PMID: 38725507</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Electrocatalysis ; Electrodes ; Energy conversion ; Gold ; Monolayers ; Nanomaterials ; Potassium ferricyanide ; Rechargeable batteries ; Redox reactions ; Self-assembled monolayers ; Self-assembly ; Stability</subject><ispartof>Chemical science (Cambridge), 2024-05, Vol.15 (18), p.6958-6964</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-3e07f9d3a2d4e624ad20fcd8f6b3d09296c6be1b7204754b2883a1cd5ac364633</cites><orcidid>0000-0003-0883-0001 ; 0000-0003-1843-597X ; 0000-0002-1090-1748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077577/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077577/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38725507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laws, Kristine</creatorcontrib><creatorcontrib>Buckingham, Mark A</creatorcontrib><creatorcontrib>Aldous, Leigh</creatorcontrib><title>Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Waste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve this; entropy-driven redox reactions allow them to act as liquid thermoelectrics. However, excellent electrocatalysis at the electrode surface is required for optimum conversion efficiency. Serendipitous observation of Nafion-based electrocatalysis prompted the exploration of electrostatically charged self-assembled monolayers (SAMs) inside a thermocell. Both electrostatic electrocatalysis and improved electrode stability were observed; in an aqueous K
3
[Fe(CN)
6
]/K
4
[Fe(CN)
6
]-based cell, modification with (3-trimethylammonium bromide)thiopropane resulted in higher electrical power, and protection against [Fe(CN)
6
]
3−/4−
-induced gold passivation, relative to bare gold. Molecular-based electrostatic electrocatalysis could be an alternative to precious metal-based nanomaterial electrocatalysis, and could be integrated with (nano)carbon-based electrodes to further enhance the ability of thermogalvanic and other electrochemical energy conversion devices,
e.g.
redox flow batteries.
Thermogalvanic cells can convert temperature gradients (
e.g.
waste heat) into electricity; here we demonstrate how electrostatically charged self-assembled monolayers can act as molecular electrocatalysts, plus reduce electrode passivation.</description><subject>Chemistry</subject><subject>Electrocatalysis</subject><subject>Electrodes</subject><subject>Energy conversion</subject><subject>Gold</subject><subject>Monolayers</subject><subject>Nanomaterials</subject><subject>Potassium ferricyanide</subject><subject>Rechargeable batteries</subject><subject>Redox reactions</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><subject>Stability</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdks1r3DAQxUVpaUKSS-8thl5KwKk-bMk-lbBN2kKgh7RnMZbGWQdZSiU5sP99tdnN9kMXScxPj3nzRMgbRi8YFf1HK5KhUkkJL8gxpw2rZSv6l4czp0fkLKV7WpYQrOXqNTkSneJtS9UxWW7RjTWkhPPg0FZz8MHBBmOqxhArdGhyDClDnszzzUAGt0lTqsDbCv0avClP91WLVcGHyU15U02-ymuMc7gD9wi-aBh0Lp2SVyO4hGf7_YT8vL76sfpa33z_8m11eVMb0XW5FkjV2FsB3DYoeQOW09HYbpSDsLTnvTRyQDao4lW1zcC7TgAztgUjZCOFOCGfdroPyzCjNehzBKcf4jRD3OgAk_634qe1vguPmjGqVKtUUfiwV4jh14Ip63lKWw_gMSxJC1qmrXjD-4K-_w-9D0v0xd-WYp1gTG1bOt9Rpow1RRwP3TCqt4nqz-J29ZToZYHf_d3_AX3OrwBvd0BM5lD98yXEb_ZFqIw</recordid><startdate>20240508</startdate><enddate>20240508</enddate><creator>Laws, Kristine</creator><creator>Buckingham, Mark A</creator><creator>Aldous, Leigh</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0883-0001</orcidid><orcidid>https://orcid.org/0000-0003-1843-597X</orcidid><orcidid>https://orcid.org/0000-0002-1090-1748</orcidid></search><sort><creationdate>20240508</creationdate><title>Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells</title><author>Laws, Kristine ; Buckingham, Mark A ; Aldous, Leigh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-3e07f9d3a2d4e624ad20fcd8f6b3d09296c6be1b7204754b2883a1cd5ac364633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Electrocatalysis</topic><topic>Electrodes</topic><topic>Energy conversion</topic><topic>Gold</topic><topic>Monolayers</topic><topic>Nanomaterials</topic><topic>Potassium ferricyanide</topic><topic>Rechargeable batteries</topic><topic>Redox reactions</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laws, Kristine</creatorcontrib><creatorcontrib>Buckingham, Mark A</creatorcontrib><creatorcontrib>Aldous, Leigh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laws, Kristine</au><au>Buckingham, Mark A</au><au>Aldous, Leigh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-05-08</date><risdate>2024</risdate><volume>15</volume><issue>18</issue><spage>6958</spage><epage>6964</epage><pages>6958-6964</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Waste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve this; entropy-driven redox reactions allow them to act as liquid thermoelectrics. However, excellent electrocatalysis at the electrode surface is required for optimum conversion efficiency. Serendipitous observation of Nafion-based electrocatalysis prompted the exploration of electrostatically charged self-assembled monolayers (SAMs) inside a thermocell. Both electrostatic electrocatalysis and improved electrode stability were observed; in an aqueous K
3
[Fe(CN)
6
]/K
4
[Fe(CN)
6
]-based cell, modification with (3-trimethylammonium bromide)thiopropane resulted in higher electrical power, and protection against [Fe(CN)
6
]
3−/4−
-induced gold passivation, relative to bare gold. Molecular-based electrostatic electrocatalysis could be an alternative to precious metal-based nanomaterial electrocatalysis, and could be integrated with (nano)carbon-based electrodes to further enhance the ability of thermogalvanic and other electrochemical energy conversion devices,
e.g.
redox flow batteries.
Thermogalvanic cells can convert temperature gradients (
e.g.
waste heat) into electricity; here we demonstrate how electrostatically charged self-assembled monolayers can act as molecular electrocatalysts, plus reduce electrode passivation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38725507</pmid><doi>10.1039/d3sc06766a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0883-0001</orcidid><orcidid>https://orcid.org/0000-0003-1843-597X</orcidid><orcidid>https://orcid.org/0000-0002-1090-1748</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-05, Vol.15 (18), p.6958-6964 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3SC06766A |
source | PubMed Central |
subjects | Chemistry Electrocatalysis Electrodes Energy conversion Gold Monolayers Nanomaterials Potassium ferricyanide Rechargeable batteries Redox reactions Self-assembled monolayers Self-assembly Stability |
title | Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembled%20monolayers%20for%20electrostatic%20electrocatalysis%20and%20enhanced%20electrode%20stability%20in%20thermogalvanic%20cells&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Laws,%20Kristine&rft.date=2024-05-08&rft.volume=15&rft.issue=18&rft.spage=6958&rft.epage=6964&rft.pages=6958-6964&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc06766a&rft_dat=%3Cproquest_cross%3E3051831173%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-3e07f9d3a2d4e624ad20fcd8f6b3d09296c6be1b7204754b2883a1cd5ac364633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051831173&rft_id=info:pmid/38725507&rfr_iscdi=true |