Loading…

Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells

Waste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve th...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2024-05, Vol.15 (18), p.6958-6964
Main Authors: Laws, Kristine, Buckingham, Mark A, Aldous, Leigh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c388t-3e07f9d3a2d4e624ad20fcd8f6b3d09296c6be1b7204754b2883a1cd5ac364633
container_end_page 6964
container_issue 18
container_start_page 6958
container_title Chemical science (Cambridge)
container_volume 15
creator Laws, Kristine
Buckingham, Mark A
Aldous, Leigh
description Waste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve this; entropy-driven redox reactions allow them to act as liquid thermoelectrics. However, excellent electrocatalysis at the electrode surface is required for optimum conversion efficiency. Serendipitous observation of Nafion-based electrocatalysis prompted the exploration of electrostatically charged self-assembled monolayers (SAMs) inside a thermocell. Both electrostatic electrocatalysis and improved electrode stability were observed; in an aqueous K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ]-based cell, modification with (3-trimethylammonium bromide)thiopropane resulted in higher electrical power, and protection against [Fe(CN) 6 ] 3−/4− -induced gold passivation, relative to bare gold. Molecular-based electrostatic electrocatalysis could be an alternative to precious metal-based nanomaterial electrocatalysis, and could be integrated with (nano)carbon-based electrodes to further enhance the ability of thermogalvanic and other electrochemical energy conversion devices, e.g. redox flow batteries. Thermogalvanic cells can convert temperature gradients ( e.g. waste heat) into electricity; here we demonstrate how electrostatically charged self-assembled monolayers can act as molecular electrocatalysts, plus reduce electrode passivation.
doi_str_mv 10.1039/d3sc06766a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3SC06766A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051831173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-3e07f9d3a2d4e624ad20fcd8f6b3d09296c6be1b7204754b2883a1cd5ac364633</originalsourceid><addsrcrecordid>eNpdks1r3DAQxUVpaUKSS-8thl5KwKk-bMk-lbBN2kKgh7RnMZbGWQdZSiU5sP99tdnN9kMXScxPj3nzRMgbRi8YFf1HK5KhUkkJL8gxpw2rZSv6l4czp0fkLKV7WpYQrOXqNTkSneJtS9UxWW7RjTWkhPPg0FZz8MHBBmOqxhArdGhyDClDnszzzUAGt0lTqsDbCv0avClP91WLVcGHyU15U02-ymuMc7gD9wi-aBh0Lp2SVyO4hGf7_YT8vL76sfpa33z_8m11eVMb0XW5FkjV2FsB3DYoeQOW09HYbpSDsLTnvTRyQDao4lW1zcC7TgAztgUjZCOFOCGfdroPyzCjNehzBKcf4jRD3OgAk_634qe1vguPmjGqVKtUUfiwV4jh14Ip63lKWw_gMSxJC1qmrXjD-4K-_w-9D0v0xd-WYp1gTG1bOt9Rpow1RRwP3TCqt4nqz-J29ZToZYHf_d3_AX3OrwBvd0BM5lD98yXEb_ZFqIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051831173</pqid></control><display><type>article</type><title>Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells</title><source>PubMed Central</source><creator>Laws, Kristine ; Buckingham, Mark A ; Aldous, Leigh</creator><creatorcontrib>Laws, Kristine ; Buckingham, Mark A ; Aldous, Leigh</creatorcontrib><description>Waste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve this; entropy-driven redox reactions allow them to act as liquid thermoelectrics. However, excellent electrocatalysis at the electrode surface is required for optimum conversion efficiency. Serendipitous observation of Nafion-based electrocatalysis prompted the exploration of electrostatically charged self-assembled monolayers (SAMs) inside a thermocell. Both electrostatic electrocatalysis and improved electrode stability were observed; in an aqueous K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ]-based cell, modification with (3-trimethylammonium bromide)thiopropane resulted in higher electrical power, and protection against [Fe(CN) 6 ] 3−/4− -induced gold passivation, relative to bare gold. Molecular-based electrostatic electrocatalysis could be an alternative to precious metal-based nanomaterial electrocatalysis, and could be integrated with (nano)carbon-based electrodes to further enhance the ability of thermogalvanic and other electrochemical energy conversion devices, e.g. redox flow batteries. Thermogalvanic cells can convert temperature gradients ( e.g. waste heat) into electricity; here we demonstrate how electrostatically charged self-assembled monolayers can act as molecular electrocatalysts, plus reduce electrode passivation.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc06766a</identifier><identifier>PMID: 38725507</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Electrocatalysis ; Electrodes ; Energy conversion ; Gold ; Monolayers ; Nanomaterials ; Potassium ferricyanide ; Rechargeable batteries ; Redox reactions ; Self-assembled monolayers ; Self-assembly ; Stability</subject><ispartof>Chemical science (Cambridge), 2024-05, Vol.15 (18), p.6958-6964</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-3e07f9d3a2d4e624ad20fcd8f6b3d09296c6be1b7204754b2883a1cd5ac364633</cites><orcidid>0000-0003-0883-0001 ; 0000-0003-1843-597X ; 0000-0002-1090-1748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077577/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077577/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38725507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laws, Kristine</creatorcontrib><creatorcontrib>Buckingham, Mark A</creatorcontrib><creatorcontrib>Aldous, Leigh</creatorcontrib><title>Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Waste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve this; entropy-driven redox reactions allow them to act as liquid thermoelectrics. However, excellent electrocatalysis at the electrode surface is required for optimum conversion efficiency. Serendipitous observation of Nafion-based electrocatalysis prompted the exploration of electrostatically charged self-assembled monolayers (SAMs) inside a thermocell. Both electrostatic electrocatalysis and improved electrode stability were observed; in an aqueous K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ]-based cell, modification with (3-trimethylammonium bromide)thiopropane resulted in higher electrical power, and protection against [Fe(CN) 6 ] 3−/4− -induced gold passivation, relative to bare gold. Molecular-based electrostatic electrocatalysis could be an alternative to precious metal-based nanomaterial electrocatalysis, and could be integrated with (nano)carbon-based electrodes to further enhance the ability of thermogalvanic and other electrochemical energy conversion devices, e.g. redox flow batteries. Thermogalvanic cells can convert temperature gradients ( e.g. waste heat) into electricity; here we demonstrate how electrostatically charged self-assembled monolayers can act as molecular electrocatalysts, plus reduce electrode passivation.</description><subject>Chemistry</subject><subject>Electrocatalysis</subject><subject>Electrodes</subject><subject>Energy conversion</subject><subject>Gold</subject><subject>Monolayers</subject><subject>Nanomaterials</subject><subject>Potassium ferricyanide</subject><subject>Rechargeable batteries</subject><subject>Redox reactions</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><subject>Stability</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdks1r3DAQxUVpaUKSS-8thl5KwKk-bMk-lbBN2kKgh7RnMZbGWQdZSiU5sP99tdnN9kMXScxPj3nzRMgbRi8YFf1HK5KhUkkJL8gxpw2rZSv6l4czp0fkLKV7WpYQrOXqNTkSneJtS9UxWW7RjTWkhPPg0FZz8MHBBmOqxhArdGhyDClDnszzzUAGt0lTqsDbCv0avClP91WLVcGHyU15U02-ymuMc7gD9wi-aBh0Lp2SVyO4hGf7_YT8vL76sfpa33z_8m11eVMb0XW5FkjV2FsB3DYoeQOW09HYbpSDsLTnvTRyQDao4lW1zcC7TgAztgUjZCOFOCGfdroPyzCjNehzBKcf4jRD3OgAk_634qe1vguPmjGqVKtUUfiwV4jh14Ip63lKWw_gMSxJC1qmrXjD-4K-_w-9D0v0xd-WYp1gTG1bOt9Rpow1RRwP3TCqt4nqz-J29ZToZYHf_d3_AX3OrwBvd0BM5lD98yXEb_ZFqIw</recordid><startdate>20240508</startdate><enddate>20240508</enddate><creator>Laws, Kristine</creator><creator>Buckingham, Mark A</creator><creator>Aldous, Leigh</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0883-0001</orcidid><orcidid>https://orcid.org/0000-0003-1843-597X</orcidid><orcidid>https://orcid.org/0000-0002-1090-1748</orcidid></search><sort><creationdate>20240508</creationdate><title>Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells</title><author>Laws, Kristine ; Buckingham, Mark A ; Aldous, Leigh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-3e07f9d3a2d4e624ad20fcd8f6b3d09296c6be1b7204754b2883a1cd5ac364633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Electrocatalysis</topic><topic>Electrodes</topic><topic>Energy conversion</topic><topic>Gold</topic><topic>Monolayers</topic><topic>Nanomaterials</topic><topic>Potassium ferricyanide</topic><topic>Rechargeable batteries</topic><topic>Redox reactions</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laws, Kristine</creatorcontrib><creatorcontrib>Buckingham, Mark A</creatorcontrib><creatorcontrib>Aldous, Leigh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laws, Kristine</au><au>Buckingham, Mark A</au><au>Aldous, Leigh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-05-08</date><risdate>2024</risdate><volume>15</volume><issue>18</issue><spage>6958</spage><epage>6964</epage><pages>6958-6964</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Waste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve this; entropy-driven redox reactions allow them to act as liquid thermoelectrics. However, excellent electrocatalysis at the electrode surface is required for optimum conversion efficiency. Serendipitous observation of Nafion-based electrocatalysis prompted the exploration of electrostatically charged self-assembled monolayers (SAMs) inside a thermocell. Both electrostatic electrocatalysis and improved electrode stability were observed; in an aqueous K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ]-based cell, modification with (3-trimethylammonium bromide)thiopropane resulted in higher electrical power, and protection against [Fe(CN) 6 ] 3−/4− -induced gold passivation, relative to bare gold. Molecular-based electrostatic electrocatalysis could be an alternative to precious metal-based nanomaterial electrocatalysis, and could be integrated with (nano)carbon-based electrodes to further enhance the ability of thermogalvanic and other electrochemical energy conversion devices, e.g. redox flow batteries. Thermogalvanic cells can convert temperature gradients ( e.g. waste heat) into electricity; here we demonstrate how electrostatically charged self-assembled monolayers can act as molecular electrocatalysts, plus reduce electrode passivation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38725507</pmid><doi>10.1039/d3sc06766a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0883-0001</orcidid><orcidid>https://orcid.org/0000-0003-1843-597X</orcidid><orcidid>https://orcid.org/0000-0002-1090-1748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-05, Vol.15 (18), p.6958-6964
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_D3SC06766A
source PubMed Central
subjects Chemistry
Electrocatalysis
Electrodes
Energy conversion
Gold
Monolayers
Nanomaterials
Potassium ferricyanide
Rechargeable batteries
Redox reactions
Self-assembled monolayers
Self-assembly
Stability
title Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembled%20monolayers%20for%20electrostatic%20electrocatalysis%20and%20enhanced%20electrode%20stability%20in%20thermogalvanic%20cells&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Laws,%20Kristine&rft.date=2024-05-08&rft.volume=15&rft.issue=18&rft.spage=6958&rft.epage=6964&rft.pages=6958-6964&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc06766a&rft_dat=%3Cproquest_cross%3E3051831173%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-3e07f9d3a2d4e624ad20fcd8f6b3d09296c6be1b7204754b2883a1cd5ac364633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051831173&rft_id=info:pmid/38725507&rfr_iscdi=true