Loading…

Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures

A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2024-04, Vol.2 (16), p.3483-3498
Main Authors: Srbova, Linda, Arasalo, Ossi, Lehtonen, Arttu J, Pokki, Juho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c332t-b0b1a93109aed8b25cdaa97fd4282190aa733e3a4a95b105418d1a929bd3b8193
container_end_page 3498
container_issue 16
container_start_page 3483
container_title Soft matter
container_volume 2
creator Srbova, Linda
Arasalo, Ossi
Lehtonen, Arttu J
Pokki, Juho
description A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 μm). These data show increasing IPN stiffness with crosslinking until saturation ( 15 mM of Ca 2+ ). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture. An approach to quantify microscale viscoelasticity in breast-cancer-associated stromal tissues was developed for cell-scale analyses of physiologically stiff 3D cell cultures.
doi_str_mv 10.1039/d3sm01425h
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3SM01425H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034776073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-b0b1a93109aed8b25cdaa97fd4282190aa733e3a4a95b105418d1a929bd3b8193</originalsourceid><addsrcrecordid>eNpdkcFLwzAUxoMobk4v3pWAFxGmSV_aJkfZ1AkbHlTwVtIkdR1NO5MW9L83dXOCp_fg-72Pj-8hdErJNSUgbjR4SyiL4uUeGtKUsXHCGd_f7fA2QEferwgBzmhyiAbAY54mMR-ixcJI37myfsfWqKWsSyUrrDrjcdE4bBttql5slwb71jU2qFa2rvzEZY1hipWper5qO2f8MTooZOXNyXaO0Ov93ctkNp4_PTxObudjBRC145zkVAqgREijeR7FSksp0kKziEdUEClTAAOSSRHnlMSMch0OIpFryDkVMEKXG9-1az5C1jazpe-TyNo0nc-AAEvThASbEbr4h66aztUhXaAYi0QSUxaoqw2lXOO9M0W2dqWV7iujJOtLzqbwvPgpeRbg861ll1ujd-hvqwE42wDOq5369yX4BtdTf_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044296514</pqid></control><display><type>article</type><title>Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Srbova, Linda ; Arasalo, Ossi ; Lehtonen, Arttu J ; Pokki, Juho</creator><creatorcontrib>Srbova, Linda ; Arasalo, Ossi ; Lehtonen, Arttu J ; Pokki, Juho</creatorcontrib><description>A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 μm). These data show increasing IPN stiffness with crosslinking until saturation ( 15 mM of Ca 2+ ). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture. An approach to quantify microscale viscoelasticity in breast-cancer-associated stromal tissues was developed for cell-scale analyses of physiologically stiff 3D cell cultures.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d3sm01425h</identifier><identifier>PMID: 38587658</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Alginates ; Alginates - chemistry ; Alginic acid ; Bayes Theorem ; Bayesian analysis ; Biomechanical Phenomena ; Biomechanics ; Calcium ions ; Cancer ; Cell culture ; Cell Culture Techniques, Three Dimensional ; Chemical stimuli ; Collagen ; Collagen Type I - chemistry ; Collagen Type I - metabolism ; Constituents ; Crosslinking ; Elasticity ; Extracellular matrix ; Extracellular Matrix - chemistry ; Extracellular Matrix - metabolism ; Heterogeneity ; Humans ; Interpenetrating networks ; Measurement methods ; Mechanical properties ; Modelling ; Models, Biological ; Neoplasms ; Probability theory ; Rheology ; Rheometry ; Saturation ; Scaffolds ; Seaweed meal ; Shear modulus ; Stiffness ; Stroma ; Stromal Cells - cytology ; Stromal Cells - metabolism ; Tissue Scaffolds - chemistry ; Tumors ; Viscoelasticity ; Viscosity</subject><ispartof>Soft matter, 2024-04, Vol.2 (16), p.3483-3498</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-b0b1a93109aed8b25cdaa97fd4282190aa733e3a4a95b105418d1a929bd3b8193</cites><orcidid>0000-0002-3198-7675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38587658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Srbova, Linda</creatorcontrib><creatorcontrib>Arasalo, Ossi</creatorcontrib><creatorcontrib>Lehtonen, Arttu J</creatorcontrib><creatorcontrib>Pokki, Juho</creatorcontrib><title>Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 μm). These data show increasing IPN stiffness with crosslinking until saturation ( 15 mM of Ca 2+ ). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture. An approach to quantify microscale viscoelasticity in breast-cancer-associated stromal tissues was developed for cell-scale analyses of physiologically stiff 3D cell cultures.</description><subject>Alginates</subject><subject>Alginates - chemistry</subject><subject>Alginic acid</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Calcium ions</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Cell Culture Techniques, Three Dimensional</subject><subject>Chemical stimuli</subject><subject>Collagen</subject><subject>Collagen Type I - chemistry</subject><subject>Collagen Type I - metabolism</subject><subject>Constituents</subject><subject>Crosslinking</subject><subject>Elasticity</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - chemistry</subject><subject>Extracellular Matrix - metabolism</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Interpenetrating networks</subject><subject>Measurement methods</subject><subject>Mechanical properties</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>Neoplasms</subject><subject>Probability theory</subject><subject>Rheology</subject><subject>Rheometry</subject><subject>Saturation</subject><subject>Scaffolds</subject><subject>Seaweed meal</subject><subject>Shear modulus</subject><subject>Stiffness</subject><subject>Stroma</subject><subject>Stromal Cells - cytology</subject><subject>Stromal Cells - metabolism</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Tumors</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkcFLwzAUxoMobk4v3pWAFxGmSV_aJkfZ1AkbHlTwVtIkdR1NO5MW9L83dXOCp_fg-72Pj-8hdErJNSUgbjR4SyiL4uUeGtKUsXHCGd_f7fA2QEferwgBzmhyiAbAY54mMR-ixcJI37myfsfWqKWsSyUrrDrjcdE4bBttql5slwb71jU2qFa2rvzEZY1hipWper5qO2f8MTooZOXNyXaO0Ov93ctkNp4_PTxObudjBRC145zkVAqgREijeR7FSksp0kKziEdUEClTAAOSSRHnlMSMch0OIpFryDkVMEKXG9-1az5C1jazpe-TyNo0nc-AAEvThASbEbr4h66aztUhXaAYi0QSUxaoqw2lXOO9M0W2dqWV7iujJOtLzqbwvPgpeRbg861ll1ujd-hvqwE42wDOq5369yX4BtdTf_M</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>Srbova, Linda</creator><creator>Arasalo, Ossi</creator><creator>Lehtonen, Arttu J</creator><creator>Pokki, Juho</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3198-7675</orcidid></search><sort><creationdate>20240424</creationdate><title>Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures</title><author>Srbova, Linda ; Arasalo, Ossi ; Lehtonen, Arttu J ; Pokki, Juho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-b0b1a93109aed8b25cdaa97fd4282190aa733e3a4a95b105418d1a929bd3b8193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alginates</topic><topic>Alginates - chemistry</topic><topic>Alginic acid</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Calcium ions</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Cell Culture Techniques, Three Dimensional</topic><topic>Chemical stimuli</topic><topic>Collagen</topic><topic>Collagen Type I - chemistry</topic><topic>Collagen Type I - metabolism</topic><topic>Constituents</topic><topic>Crosslinking</topic><topic>Elasticity</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - chemistry</topic><topic>Extracellular Matrix - metabolism</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Interpenetrating networks</topic><topic>Measurement methods</topic><topic>Mechanical properties</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>Neoplasms</topic><topic>Probability theory</topic><topic>Rheology</topic><topic>Rheometry</topic><topic>Saturation</topic><topic>Scaffolds</topic><topic>Seaweed meal</topic><topic>Shear modulus</topic><topic>Stiffness</topic><topic>Stroma</topic><topic>Stromal Cells - cytology</topic><topic>Stromal Cells - metabolism</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Tumors</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srbova, Linda</creatorcontrib><creatorcontrib>Arasalo, Ossi</creatorcontrib><creatorcontrib>Lehtonen, Arttu J</creatorcontrib><creatorcontrib>Pokki, Juho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srbova, Linda</au><au>Arasalo, Ossi</au><au>Lehtonen, Arttu J</au><au>Pokki, Juho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2024-04-24</date><risdate>2024</risdate><volume>2</volume><issue>16</issue><spage>3483</spage><epage>3498</epage><pages>3483-3498</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 μm). These data show increasing IPN stiffness with crosslinking until saturation ( 15 mM of Ca 2+ ). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture. An approach to quantify microscale viscoelasticity in breast-cancer-associated stromal tissues was developed for cell-scale analyses of physiologically stiff 3D cell cultures.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38587658</pmid><doi>10.1039/d3sm01425h</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3198-7675</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2024-04, Vol.2 (16), p.3483-3498
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_D3SM01425H
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Alginates
Alginates - chemistry
Alginic acid
Bayes Theorem
Bayesian analysis
Biomechanical Phenomena
Biomechanics
Calcium ions
Cancer
Cell culture
Cell Culture Techniques, Three Dimensional
Chemical stimuli
Collagen
Collagen Type I - chemistry
Collagen Type I - metabolism
Constituents
Crosslinking
Elasticity
Extracellular matrix
Extracellular Matrix - chemistry
Extracellular Matrix - metabolism
Heterogeneity
Humans
Interpenetrating networks
Measurement methods
Mechanical properties
Modelling
Models, Biological
Neoplasms
Probability theory
Rheology
Rheometry
Saturation
Scaffolds
Seaweed meal
Shear modulus
Stiffness
Stroma
Stromal Cells - cytology
Stromal Cells - metabolism
Tissue Scaffolds - chemistry
Tumors
Viscoelasticity
Viscosity
title Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20mechanical%20cues%20for%20modeling%20the%20stromal%20matrix%20in%203D%20cell%20cultures&rft.jtitle=Soft%20matter&rft.au=Srbova,%20Linda&rft.date=2024-04-24&rft.volume=2&rft.issue=16&rft.spage=3483&rft.epage=3498&rft.pages=3483-3498&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d3sm01425h&rft_dat=%3Cproquest_cross%3E3034776073%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-b0b1a93109aed8b25cdaa97fd4282190aa733e3a4a95b105418d1a929bd3b8193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044296514&rft_id=info:pmid/38587658&rfr_iscdi=true