Loading…

Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation

Designing an appropriate oxygen evolution reaction (OER) catalyst for photoelectrochemical (PEC) water splitting is an urgent issue for providing high-efficiency solar to hydrogen energy production. Transition metals have been central to OER catalyst research due to their plentifulness and specific...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-08, Vol.11 (33), p.1753-17513
Main Authors: Choi, Sungkyun, Lee, Sol A, Yang, Jin Wook, Sohn, Woonbae, Kim, Jaehyun, Cheon, Woo Seok, Park, Jaemin, Cho, Jin Hyuk, Lee, Chung Won, Jun, Sang Eon, Park, Sung Hyuk, Moon, Jooho, Kim, Soo Young, Jang, Ho Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13
cites cdi_FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13
container_end_page 17513
container_issue 33
container_start_page 1753
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Choi, Sungkyun
Lee, Sol A
Yang, Jin Wook
Sohn, Woonbae
Kim, Jaehyun
Cheon, Woo Seok
Park, Jaemin
Cho, Jin Hyuk
Lee, Chung Won
Jun, Sang Eon
Park, Sung Hyuk
Moon, Jooho
Kim, Soo Young
Jang, Ho Won
description Designing an appropriate oxygen evolution reaction (OER) catalyst for photoelectrochemical (PEC) water splitting is an urgent issue for providing high-efficiency solar to hydrogen energy production. Transition metals have been central to OER catalyst research due to their plentifulness and specific electronic structure, but overcoming their water oxidation limits, including high overpotential and sluggish kinetics, remains challenging. The effective usage of noble metals for the OER, such as an intentional introduction of low-concentration noble metals into earth-abundant materials, can complement the limited reserve of noble metals and largely enhance the entire efficiency of solar water oxidation. Herein, we developed an OER photoelectrode of Au-incorporated NiFe layered double hydroxide (LDH) placed on a strong light absorber n-type silicon (Au-NiFe LDH/n-Si). With a minimal Au content of 2.7% in the catalyst structure, synergistic effects between noble metal Au and transition metal-based NiFe LDH notably accelerated the OER kinetics while stabilizing the Si-based photoanode structure in corrosive alkaline electrolyte. Optimally fabricated Au-NiFe LDH through a facile two-step electrodeposition process on n-Si exhibited a high saturated photocurrent density of ∼37 mA cm −2 , and the saturated photocurrent density could be reached at an early underpotential point of 1.2 V vs. RHE. Moreover, it operated for ∼50 hours in pH 11.5 electrolyte, showing 5 times higher stability than NiFe LDH/n-Si under the same alkaline conditions. One step further, a 1/48 decrease in recombination kinetics could be achieved through doping Au atoms into NiFe LDH, revealing the efficacious defect site passivation effect with the minimum amount of noble metal usage. Atomically doped Au in NiFe-LDH effectively passivates defect sites, substantially enhancing overall PEC water oxidation properties.
doi_str_mv 10.1039/d3ta03075j
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA03075J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854316691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhhdRsNRevAsBb8JqPvYjOdZq_aDopZ6XNJl0U7abmmTR_gN_trtWdBiYGXjeGXgnSc4JviaYiRvNosQMl_nmKBlRnOO0zERx_NdzfppMQtjgPjjGhRCj5OvWuRBBI1VLvwYUvWzDzvmIYu1dt67RtEu3Tltje-jFzgE1cg--H7TrVg2geq-9-7QakGtRsI1VfTXOIzDGKgttRLvaRQcNqOidqmFrlWzQh4zg0aCU0br2LDkxsgkw-a3j5G1-v5w9povXh6fZdJEqyklMqSFsxRUXaqWN4QxniqosL1VhSpoXglA2ZFEwTYFpJWQuMckFYVxTCYSNk8vD3p137x2EWG1c59v-ZEV5ng1SMVBXB0p5F4IHU-283Uq_rwiuBrOrO7ac_pj93MMXB9gH9cf9P4N9A-2ffeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854316691</pqid></control><display><type>article</type><title>Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation</title><source>Royal Society of Chemistry</source><creator>Choi, Sungkyun ; Lee, Sol A ; Yang, Jin Wook ; Sohn, Woonbae ; Kim, Jaehyun ; Cheon, Woo Seok ; Park, Jaemin ; Cho, Jin Hyuk ; Lee, Chung Won ; Jun, Sang Eon ; Park, Sung Hyuk ; Moon, Jooho ; Kim, Soo Young ; Jang, Ho Won</creator><creatorcontrib>Choi, Sungkyun ; Lee, Sol A ; Yang, Jin Wook ; Sohn, Woonbae ; Kim, Jaehyun ; Cheon, Woo Seok ; Park, Jaemin ; Cho, Jin Hyuk ; Lee, Chung Won ; Jun, Sang Eon ; Park, Sung Hyuk ; Moon, Jooho ; Kim, Soo Young ; Jang, Ho Won</creatorcontrib><description>Designing an appropriate oxygen evolution reaction (OER) catalyst for photoelectrochemical (PEC) water splitting is an urgent issue for providing high-efficiency solar to hydrogen energy production. Transition metals have been central to OER catalyst research due to their plentifulness and specific electronic structure, but overcoming their water oxidation limits, including high overpotential and sluggish kinetics, remains challenging. The effective usage of noble metals for the OER, such as an intentional introduction of low-concentration noble metals into earth-abundant materials, can complement the limited reserve of noble metals and largely enhance the entire efficiency of solar water oxidation. Herein, we developed an OER photoelectrode of Au-incorporated NiFe layered double hydroxide (LDH) placed on a strong light absorber n-type silicon (Au-NiFe LDH/n-Si). With a minimal Au content of 2.7% in the catalyst structure, synergistic effects between noble metal Au and transition metal-based NiFe LDH notably accelerated the OER kinetics while stabilizing the Si-based photoanode structure in corrosive alkaline electrolyte. Optimally fabricated Au-NiFe LDH through a facile two-step electrodeposition process on n-Si exhibited a high saturated photocurrent density of ∼37 mA cm −2 , and the saturated photocurrent density could be reached at an early underpotential point of 1.2 V vs. RHE. Moreover, it operated for ∼50 hours in pH 11.5 electrolyte, showing 5 times higher stability than NiFe LDH/n-Si under the same alkaline conditions. One step further, a 1/48 decrease in recombination kinetics could be achieved through doping Au atoms into NiFe LDH, revealing the efficacious defect site passivation effect with the minimum amount of noble metal usage. Atomically doped Au in NiFe-LDH effectively passivates defect sites, substantially enhancing overall PEC water oxidation properties.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta03075j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Charge transport ; Density ; Electrolytes ; Electronic structure ; Gold ; Hydrogen-based energy ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Kinetics ; Metal concentrations ; Metals ; Nickel compounds ; Noble metals ; Oxidation ; Oxygen evolution reactions ; Photoelectric effect ; Photoelectric emission ; Recombination ; Silicon ; Solar energy ; Synergistic effect ; Transition metals ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-08, Vol.11 (33), p.1753-17513</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13</citedby><cites>FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13</cites><orcidid>0000-0003-3546-9151 ; 0000-0002-6952-7359 ; 0000-0002-0685-7991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Choi, Sungkyun</creatorcontrib><creatorcontrib>Lee, Sol A</creatorcontrib><creatorcontrib>Yang, Jin Wook</creatorcontrib><creatorcontrib>Sohn, Woonbae</creatorcontrib><creatorcontrib>Kim, Jaehyun</creatorcontrib><creatorcontrib>Cheon, Woo Seok</creatorcontrib><creatorcontrib>Park, Jaemin</creatorcontrib><creatorcontrib>Cho, Jin Hyuk</creatorcontrib><creatorcontrib>Lee, Chung Won</creatorcontrib><creatorcontrib>Jun, Sang Eon</creatorcontrib><creatorcontrib>Park, Sung Hyuk</creatorcontrib><creatorcontrib>Moon, Jooho</creatorcontrib><creatorcontrib>Kim, Soo Young</creatorcontrib><creatorcontrib>Jang, Ho Won</creatorcontrib><title>Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Designing an appropriate oxygen evolution reaction (OER) catalyst for photoelectrochemical (PEC) water splitting is an urgent issue for providing high-efficiency solar to hydrogen energy production. Transition metals have been central to OER catalyst research due to their plentifulness and specific electronic structure, but overcoming their water oxidation limits, including high overpotential and sluggish kinetics, remains challenging. The effective usage of noble metals for the OER, such as an intentional introduction of low-concentration noble metals into earth-abundant materials, can complement the limited reserve of noble metals and largely enhance the entire efficiency of solar water oxidation. Herein, we developed an OER photoelectrode of Au-incorporated NiFe layered double hydroxide (LDH) placed on a strong light absorber n-type silicon (Au-NiFe LDH/n-Si). With a minimal Au content of 2.7% in the catalyst structure, synergistic effects between noble metal Au and transition metal-based NiFe LDH notably accelerated the OER kinetics while stabilizing the Si-based photoanode structure in corrosive alkaline electrolyte. Optimally fabricated Au-NiFe LDH through a facile two-step electrodeposition process on n-Si exhibited a high saturated photocurrent density of ∼37 mA cm −2 , and the saturated photocurrent density could be reached at an early underpotential point of 1.2 V vs. RHE. Moreover, it operated for ∼50 hours in pH 11.5 electrolyte, showing 5 times higher stability than NiFe LDH/n-Si under the same alkaline conditions. One step further, a 1/48 decrease in recombination kinetics could be achieved through doping Au atoms into NiFe LDH, revealing the efficacious defect site passivation effect with the minimum amount of noble metal usage. Atomically doped Au in NiFe-LDH effectively passivates defect sites, substantially enhancing overall PEC water oxidation properties.</description><subject>Catalysts</subject><subject>Charge transport</subject><subject>Density</subject><subject>Electrolytes</subject><subject>Electronic structure</subject><subject>Gold</subject><subject>Hydrogen-based energy</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Kinetics</subject><subject>Metal concentrations</subject><subject>Metals</subject><subject>Nickel compounds</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Recombination</subject><subject>Silicon</subject><subject>Solar energy</subject><subject>Synergistic effect</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhhdRsNRevAsBb8JqPvYjOdZq_aDopZ6XNJl0U7abmmTR_gN_trtWdBiYGXjeGXgnSc4JviaYiRvNosQMl_nmKBlRnOO0zERx_NdzfppMQtjgPjjGhRCj5OvWuRBBI1VLvwYUvWzDzvmIYu1dt67RtEu3Tltje-jFzgE1cg--H7TrVg2geq-9-7QakGtRsI1VfTXOIzDGKgttRLvaRQcNqOidqmFrlWzQh4zg0aCU0br2LDkxsgkw-a3j5G1-v5w9povXh6fZdJEqyklMqSFsxRUXaqWN4QxniqosL1VhSpoXglA2ZFEwTYFpJWQuMckFYVxTCYSNk8vD3p137x2EWG1c59v-ZEV5ng1SMVBXB0p5F4IHU-283Uq_rwiuBrOrO7ac_pj93MMXB9gH9cf9P4N9A-2ffeI</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Choi, Sungkyun</creator><creator>Lee, Sol A</creator><creator>Yang, Jin Wook</creator><creator>Sohn, Woonbae</creator><creator>Kim, Jaehyun</creator><creator>Cheon, Woo Seok</creator><creator>Park, Jaemin</creator><creator>Cho, Jin Hyuk</creator><creator>Lee, Chung Won</creator><creator>Jun, Sang Eon</creator><creator>Park, Sung Hyuk</creator><creator>Moon, Jooho</creator><creator>Kim, Soo Young</creator><creator>Jang, Ho Won</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3546-9151</orcidid><orcidid>https://orcid.org/0000-0002-6952-7359</orcidid><orcidid>https://orcid.org/0000-0002-0685-7991</orcidid></search><sort><creationdate>20230822</creationdate><title>Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation</title><author>Choi, Sungkyun ; Lee, Sol A ; Yang, Jin Wook ; Sohn, Woonbae ; Kim, Jaehyun ; Cheon, Woo Seok ; Park, Jaemin ; Cho, Jin Hyuk ; Lee, Chung Won ; Jun, Sang Eon ; Park, Sung Hyuk ; Moon, Jooho ; Kim, Soo Young ; Jang, Ho Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Charge transport</topic><topic>Density</topic><topic>Electrolytes</topic><topic>Electronic structure</topic><topic>Gold</topic><topic>Hydrogen-based energy</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Kinetics</topic><topic>Metal concentrations</topic><topic>Metals</topic><topic>Nickel compounds</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Recombination</topic><topic>Silicon</topic><topic>Solar energy</topic><topic>Synergistic effect</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Sungkyun</creatorcontrib><creatorcontrib>Lee, Sol A</creatorcontrib><creatorcontrib>Yang, Jin Wook</creatorcontrib><creatorcontrib>Sohn, Woonbae</creatorcontrib><creatorcontrib>Kim, Jaehyun</creatorcontrib><creatorcontrib>Cheon, Woo Seok</creatorcontrib><creatorcontrib>Park, Jaemin</creatorcontrib><creatorcontrib>Cho, Jin Hyuk</creatorcontrib><creatorcontrib>Lee, Chung Won</creatorcontrib><creatorcontrib>Jun, Sang Eon</creatorcontrib><creatorcontrib>Park, Sung Hyuk</creatorcontrib><creatorcontrib>Moon, Jooho</creatorcontrib><creatorcontrib>Kim, Soo Young</creatorcontrib><creatorcontrib>Jang, Ho Won</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Sungkyun</au><au>Lee, Sol A</au><au>Yang, Jin Wook</au><au>Sohn, Woonbae</au><au>Kim, Jaehyun</au><au>Cheon, Woo Seok</au><au>Park, Jaemin</au><au>Cho, Jin Hyuk</au><au>Lee, Chung Won</au><au>Jun, Sang Eon</au><au>Park, Sung Hyuk</au><au>Moon, Jooho</au><au>Kim, Soo Young</au><au>Jang, Ho Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>11</volume><issue>33</issue><spage>1753</spage><epage>17513</epage><pages>1753-17513</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Designing an appropriate oxygen evolution reaction (OER) catalyst for photoelectrochemical (PEC) water splitting is an urgent issue for providing high-efficiency solar to hydrogen energy production. Transition metals have been central to OER catalyst research due to their plentifulness and specific electronic structure, but overcoming their water oxidation limits, including high overpotential and sluggish kinetics, remains challenging. The effective usage of noble metals for the OER, such as an intentional introduction of low-concentration noble metals into earth-abundant materials, can complement the limited reserve of noble metals and largely enhance the entire efficiency of solar water oxidation. Herein, we developed an OER photoelectrode of Au-incorporated NiFe layered double hydroxide (LDH) placed on a strong light absorber n-type silicon (Au-NiFe LDH/n-Si). With a minimal Au content of 2.7% in the catalyst structure, synergistic effects between noble metal Au and transition metal-based NiFe LDH notably accelerated the OER kinetics while stabilizing the Si-based photoanode structure in corrosive alkaline electrolyte. Optimally fabricated Au-NiFe LDH through a facile two-step electrodeposition process on n-Si exhibited a high saturated photocurrent density of ∼37 mA cm −2 , and the saturated photocurrent density could be reached at an early underpotential point of 1.2 V vs. RHE. Moreover, it operated for ∼50 hours in pH 11.5 electrolyte, showing 5 times higher stability than NiFe LDH/n-Si under the same alkaline conditions. One step further, a 1/48 decrease in recombination kinetics could be achieved through doping Au atoms into NiFe LDH, revealing the efficacious defect site passivation effect with the minimum amount of noble metal usage. Atomically doped Au in NiFe-LDH effectively passivates defect sites, substantially enhancing overall PEC water oxidation properties.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta03075j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3546-9151</orcidid><orcidid>https://orcid.org/0000-0002-6952-7359</orcidid><orcidid>https://orcid.org/0000-0002-0685-7991</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-08, Vol.11 (33), p.1753-17513
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D3TA03075J
source Royal Society of Chemistry
subjects Catalysts
Charge transport
Density
Electrolytes
Electronic structure
Gold
Hydrogen-based energy
Hydroxides
Intermetallic compounds
Iron compounds
Kinetics
Metal concentrations
Metals
Nickel compounds
Noble metals
Oxidation
Oxygen evolution reactions
Photoelectric effect
Photoelectric emission
Recombination
Silicon
Solar energy
Synergistic effect
Transition metals
Water splitting
title Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosted%20charge%20transport%20through%20Au-modified%20NiFe%20layered%20double%20hydroxide%20on%20silicon%20for%20efficient%20photoelectrochemical%20water%20oxidation&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Choi,%20Sungkyun&rft.date=2023-08-22&rft.volume=11&rft.issue=33&rft.spage=1753&rft.epage=17513&rft.pages=1753-17513&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta03075j&rft_dat=%3Cproquest_cross%3E2854316691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854316691&rft_id=info:pmid/&rfr_iscdi=true