Loading…
Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation
Designing an appropriate oxygen evolution reaction (OER) catalyst for photoelectrochemical (PEC) water splitting is an urgent issue for providing high-efficiency solar to hydrogen energy production. Transition metals have been central to OER catalyst research due to their plentifulness and specific...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-08, Vol.11 (33), p.1753-17513 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13 |
container_end_page | 17513 |
container_issue | 33 |
container_start_page | 1753 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Choi, Sungkyun Lee, Sol A Yang, Jin Wook Sohn, Woonbae Kim, Jaehyun Cheon, Woo Seok Park, Jaemin Cho, Jin Hyuk Lee, Chung Won Jun, Sang Eon Park, Sung Hyuk Moon, Jooho Kim, Soo Young Jang, Ho Won |
description | Designing an appropriate oxygen evolution reaction (OER) catalyst for photoelectrochemical (PEC) water splitting is an urgent issue for providing high-efficiency solar to hydrogen energy production. Transition metals have been central to OER catalyst research due to their plentifulness and specific electronic structure, but overcoming their water oxidation limits, including high overpotential and sluggish kinetics, remains challenging. The effective usage of noble metals for the OER, such as an intentional introduction of low-concentration noble metals into earth-abundant materials, can complement the limited reserve of noble metals and largely enhance the entire efficiency of solar water oxidation. Herein, we developed an OER photoelectrode of Au-incorporated NiFe layered double hydroxide (LDH) placed on a strong light absorber n-type silicon (Au-NiFe LDH/n-Si). With a minimal Au content of 2.7% in the catalyst structure, synergistic effects between noble metal Au and transition metal-based NiFe LDH notably accelerated the OER kinetics while stabilizing the Si-based photoanode structure in corrosive alkaline electrolyte. Optimally fabricated Au-NiFe LDH through a facile two-step electrodeposition process on n-Si exhibited a high saturated photocurrent density of ∼37 mA cm
−2
, and the saturated photocurrent density could be reached at an early underpotential point of 1.2 V
vs.
RHE. Moreover, it operated for ∼50 hours in pH 11.5 electrolyte, showing 5 times higher stability than NiFe LDH/n-Si under the same alkaline conditions. One step further, a 1/48 decrease in recombination kinetics could be achieved through doping Au atoms into NiFe LDH, revealing the efficacious defect site passivation effect with the minimum amount of noble metal usage.
Atomically doped Au in NiFe-LDH effectively passivates defect sites, substantially enhancing overall PEC water oxidation properties. |
doi_str_mv | 10.1039/d3ta03075j |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA03075J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854316691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhhdRsNRevAsBb8JqPvYjOdZq_aDopZ6XNJl0U7abmmTR_gN_trtWdBiYGXjeGXgnSc4JviaYiRvNosQMl_nmKBlRnOO0zERx_NdzfppMQtjgPjjGhRCj5OvWuRBBI1VLvwYUvWzDzvmIYu1dt67RtEu3Tltje-jFzgE1cg--H7TrVg2geq-9-7QakGtRsI1VfTXOIzDGKgttRLvaRQcNqOidqmFrlWzQh4zg0aCU0br2LDkxsgkw-a3j5G1-v5w9povXh6fZdJEqyklMqSFsxRUXaqWN4QxniqosL1VhSpoXglA2ZFEwTYFpJWQuMckFYVxTCYSNk8vD3p137x2EWG1c59v-ZEV5ng1SMVBXB0p5F4IHU-283Uq_rwiuBrOrO7ac_pj93MMXB9gH9cf9P4N9A-2ffeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854316691</pqid></control><display><type>article</type><title>Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation</title><source>Royal Society of Chemistry</source><creator>Choi, Sungkyun ; Lee, Sol A ; Yang, Jin Wook ; Sohn, Woonbae ; Kim, Jaehyun ; Cheon, Woo Seok ; Park, Jaemin ; Cho, Jin Hyuk ; Lee, Chung Won ; Jun, Sang Eon ; Park, Sung Hyuk ; Moon, Jooho ; Kim, Soo Young ; Jang, Ho Won</creator><creatorcontrib>Choi, Sungkyun ; Lee, Sol A ; Yang, Jin Wook ; Sohn, Woonbae ; Kim, Jaehyun ; Cheon, Woo Seok ; Park, Jaemin ; Cho, Jin Hyuk ; Lee, Chung Won ; Jun, Sang Eon ; Park, Sung Hyuk ; Moon, Jooho ; Kim, Soo Young ; Jang, Ho Won</creatorcontrib><description>Designing an appropriate oxygen evolution reaction (OER) catalyst for photoelectrochemical (PEC) water splitting is an urgent issue for providing high-efficiency solar to hydrogen energy production. Transition metals have been central to OER catalyst research due to their plentifulness and specific electronic structure, but overcoming their water oxidation limits, including high overpotential and sluggish kinetics, remains challenging. The effective usage of noble metals for the OER, such as an intentional introduction of low-concentration noble metals into earth-abundant materials, can complement the limited reserve of noble metals and largely enhance the entire efficiency of solar water oxidation. Herein, we developed an OER photoelectrode of Au-incorporated NiFe layered double hydroxide (LDH) placed on a strong light absorber n-type silicon (Au-NiFe LDH/n-Si). With a minimal Au content of 2.7% in the catalyst structure, synergistic effects between noble metal Au and transition metal-based NiFe LDH notably accelerated the OER kinetics while stabilizing the Si-based photoanode structure in corrosive alkaline electrolyte. Optimally fabricated Au-NiFe LDH through a facile two-step electrodeposition process on n-Si exhibited a high saturated photocurrent density of ∼37 mA cm
−2
, and the saturated photocurrent density could be reached at an early underpotential point of 1.2 V
vs.
RHE. Moreover, it operated for ∼50 hours in pH 11.5 electrolyte, showing 5 times higher stability than NiFe LDH/n-Si under the same alkaline conditions. One step further, a 1/48 decrease in recombination kinetics could be achieved through doping Au atoms into NiFe LDH, revealing the efficacious defect site passivation effect with the minimum amount of noble metal usage.
Atomically doped Au in NiFe-LDH effectively passivates defect sites, substantially enhancing overall PEC water oxidation properties.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta03075j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Charge transport ; Density ; Electrolytes ; Electronic structure ; Gold ; Hydrogen-based energy ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Kinetics ; Metal concentrations ; Metals ; Nickel compounds ; Noble metals ; Oxidation ; Oxygen evolution reactions ; Photoelectric effect ; Photoelectric emission ; Recombination ; Silicon ; Solar energy ; Synergistic effect ; Transition metals ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-08, Vol.11 (33), p.1753-17513</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13</citedby><cites>FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13</cites><orcidid>0000-0003-3546-9151 ; 0000-0002-6952-7359 ; 0000-0002-0685-7991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Choi, Sungkyun</creatorcontrib><creatorcontrib>Lee, Sol A</creatorcontrib><creatorcontrib>Yang, Jin Wook</creatorcontrib><creatorcontrib>Sohn, Woonbae</creatorcontrib><creatorcontrib>Kim, Jaehyun</creatorcontrib><creatorcontrib>Cheon, Woo Seok</creatorcontrib><creatorcontrib>Park, Jaemin</creatorcontrib><creatorcontrib>Cho, Jin Hyuk</creatorcontrib><creatorcontrib>Lee, Chung Won</creatorcontrib><creatorcontrib>Jun, Sang Eon</creatorcontrib><creatorcontrib>Park, Sung Hyuk</creatorcontrib><creatorcontrib>Moon, Jooho</creatorcontrib><creatorcontrib>Kim, Soo Young</creatorcontrib><creatorcontrib>Jang, Ho Won</creatorcontrib><title>Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Designing an appropriate oxygen evolution reaction (OER) catalyst for photoelectrochemical (PEC) water splitting is an urgent issue for providing high-efficiency solar to hydrogen energy production. Transition metals have been central to OER catalyst research due to their plentifulness and specific electronic structure, but overcoming their water oxidation limits, including high overpotential and sluggish kinetics, remains challenging. The effective usage of noble metals for the OER, such as an intentional introduction of low-concentration noble metals into earth-abundant materials, can complement the limited reserve of noble metals and largely enhance the entire efficiency of solar water oxidation. Herein, we developed an OER photoelectrode of Au-incorporated NiFe layered double hydroxide (LDH) placed on a strong light absorber n-type silicon (Au-NiFe LDH/n-Si). With a minimal Au content of 2.7% in the catalyst structure, synergistic effects between noble metal Au and transition metal-based NiFe LDH notably accelerated the OER kinetics while stabilizing the Si-based photoanode structure in corrosive alkaline electrolyte. Optimally fabricated Au-NiFe LDH through a facile two-step electrodeposition process on n-Si exhibited a high saturated photocurrent density of ∼37 mA cm
−2
, and the saturated photocurrent density could be reached at an early underpotential point of 1.2 V
vs.
RHE. Moreover, it operated for ∼50 hours in pH 11.5 electrolyte, showing 5 times higher stability than NiFe LDH/n-Si under the same alkaline conditions. One step further, a 1/48 decrease in recombination kinetics could be achieved through doping Au atoms into NiFe LDH, revealing the efficacious defect site passivation effect with the minimum amount of noble metal usage.
Atomically doped Au in NiFe-LDH effectively passivates defect sites, substantially enhancing overall PEC water oxidation properties.</description><subject>Catalysts</subject><subject>Charge transport</subject><subject>Density</subject><subject>Electrolytes</subject><subject>Electronic structure</subject><subject>Gold</subject><subject>Hydrogen-based energy</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Kinetics</subject><subject>Metal concentrations</subject><subject>Metals</subject><subject>Nickel compounds</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Recombination</subject><subject>Silicon</subject><subject>Solar energy</subject><subject>Synergistic effect</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhhdRsNRevAsBb8JqPvYjOdZq_aDopZ6XNJl0U7abmmTR_gN_trtWdBiYGXjeGXgnSc4JviaYiRvNosQMl_nmKBlRnOO0zERx_NdzfppMQtjgPjjGhRCj5OvWuRBBI1VLvwYUvWzDzvmIYu1dt67RtEu3Tltje-jFzgE1cg--H7TrVg2geq-9-7QakGtRsI1VfTXOIzDGKgttRLvaRQcNqOidqmFrlWzQh4zg0aCU0br2LDkxsgkw-a3j5G1-v5w9povXh6fZdJEqyklMqSFsxRUXaqWN4QxniqosL1VhSpoXglA2ZFEwTYFpJWQuMckFYVxTCYSNk8vD3p137x2EWG1c59v-ZEV5ng1SMVBXB0p5F4IHU-283Uq_rwiuBrOrO7ac_pj93MMXB9gH9cf9P4N9A-2ffeI</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Choi, Sungkyun</creator><creator>Lee, Sol A</creator><creator>Yang, Jin Wook</creator><creator>Sohn, Woonbae</creator><creator>Kim, Jaehyun</creator><creator>Cheon, Woo Seok</creator><creator>Park, Jaemin</creator><creator>Cho, Jin Hyuk</creator><creator>Lee, Chung Won</creator><creator>Jun, Sang Eon</creator><creator>Park, Sung Hyuk</creator><creator>Moon, Jooho</creator><creator>Kim, Soo Young</creator><creator>Jang, Ho Won</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3546-9151</orcidid><orcidid>https://orcid.org/0000-0002-6952-7359</orcidid><orcidid>https://orcid.org/0000-0002-0685-7991</orcidid></search><sort><creationdate>20230822</creationdate><title>Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation</title><author>Choi, Sungkyun ; Lee, Sol A ; Yang, Jin Wook ; Sohn, Woonbae ; Kim, Jaehyun ; Cheon, Woo Seok ; Park, Jaemin ; Cho, Jin Hyuk ; Lee, Chung Won ; Jun, Sang Eon ; Park, Sung Hyuk ; Moon, Jooho ; Kim, Soo Young ; Jang, Ho Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Charge transport</topic><topic>Density</topic><topic>Electrolytes</topic><topic>Electronic structure</topic><topic>Gold</topic><topic>Hydrogen-based energy</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Kinetics</topic><topic>Metal concentrations</topic><topic>Metals</topic><topic>Nickel compounds</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Recombination</topic><topic>Silicon</topic><topic>Solar energy</topic><topic>Synergistic effect</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Sungkyun</creatorcontrib><creatorcontrib>Lee, Sol A</creatorcontrib><creatorcontrib>Yang, Jin Wook</creatorcontrib><creatorcontrib>Sohn, Woonbae</creatorcontrib><creatorcontrib>Kim, Jaehyun</creatorcontrib><creatorcontrib>Cheon, Woo Seok</creatorcontrib><creatorcontrib>Park, Jaemin</creatorcontrib><creatorcontrib>Cho, Jin Hyuk</creatorcontrib><creatorcontrib>Lee, Chung Won</creatorcontrib><creatorcontrib>Jun, Sang Eon</creatorcontrib><creatorcontrib>Park, Sung Hyuk</creatorcontrib><creatorcontrib>Moon, Jooho</creatorcontrib><creatorcontrib>Kim, Soo Young</creatorcontrib><creatorcontrib>Jang, Ho Won</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Sungkyun</au><au>Lee, Sol A</au><au>Yang, Jin Wook</au><au>Sohn, Woonbae</au><au>Kim, Jaehyun</au><au>Cheon, Woo Seok</au><au>Park, Jaemin</au><au>Cho, Jin Hyuk</au><au>Lee, Chung Won</au><au>Jun, Sang Eon</au><au>Park, Sung Hyuk</au><au>Moon, Jooho</au><au>Kim, Soo Young</au><au>Jang, Ho Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>11</volume><issue>33</issue><spage>1753</spage><epage>17513</epage><pages>1753-17513</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Designing an appropriate oxygen evolution reaction (OER) catalyst for photoelectrochemical (PEC) water splitting is an urgent issue for providing high-efficiency solar to hydrogen energy production. Transition metals have been central to OER catalyst research due to their plentifulness and specific electronic structure, but overcoming their water oxidation limits, including high overpotential and sluggish kinetics, remains challenging. The effective usage of noble metals for the OER, such as an intentional introduction of low-concentration noble metals into earth-abundant materials, can complement the limited reserve of noble metals and largely enhance the entire efficiency of solar water oxidation. Herein, we developed an OER photoelectrode of Au-incorporated NiFe layered double hydroxide (LDH) placed on a strong light absorber n-type silicon (Au-NiFe LDH/n-Si). With a minimal Au content of 2.7% in the catalyst structure, synergistic effects between noble metal Au and transition metal-based NiFe LDH notably accelerated the OER kinetics while stabilizing the Si-based photoanode structure in corrosive alkaline electrolyte. Optimally fabricated Au-NiFe LDH through a facile two-step electrodeposition process on n-Si exhibited a high saturated photocurrent density of ∼37 mA cm
−2
, and the saturated photocurrent density could be reached at an early underpotential point of 1.2 V
vs.
RHE. Moreover, it operated for ∼50 hours in pH 11.5 electrolyte, showing 5 times higher stability than NiFe LDH/n-Si under the same alkaline conditions. One step further, a 1/48 decrease in recombination kinetics could be achieved through doping Au atoms into NiFe LDH, revealing the efficacious defect site passivation effect with the minimum amount of noble metal usage.
Atomically doped Au in NiFe-LDH effectively passivates defect sites, substantially enhancing overall PEC water oxidation properties.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta03075j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3546-9151</orcidid><orcidid>https://orcid.org/0000-0002-6952-7359</orcidid><orcidid>https://orcid.org/0000-0002-0685-7991</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-08, Vol.11 (33), p.1753-17513 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3TA03075J |
source | Royal Society of Chemistry |
subjects | Catalysts Charge transport Density Electrolytes Electronic structure Gold Hydrogen-based energy Hydroxides Intermetallic compounds Iron compounds Kinetics Metal concentrations Metals Nickel compounds Noble metals Oxidation Oxygen evolution reactions Photoelectric effect Photoelectric emission Recombination Silicon Solar energy Synergistic effect Transition metals Water splitting |
title | Boosted charge transport through Au-modified NiFe layered double hydroxide on silicon for efficient photoelectrochemical water oxidation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosted%20charge%20transport%20through%20Au-modified%20NiFe%20layered%20double%20hydroxide%20on%20silicon%20for%20efficient%20photoelectrochemical%20water%20oxidation&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Choi,%20Sungkyun&rft.date=2023-08-22&rft.volume=11&rft.issue=33&rft.spage=1753&rft.epage=17513&rft.pages=1753-17513&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta03075j&rft_dat=%3Cproquest_cross%3E2854316691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-2f13b8c89cbdff8304c2c457c6f725691231231663d2e3dc9a5a0159138d2ae13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854316691&rft_id=info:pmid/&rfr_iscdi=true |