Loading…

Superior conductive 1D and 2D network structured carbon-coated Ni-rich Li 1.05 Ni 0.88 Co 0.08 Mn 0.04 O 2 as high-ion-diffusion cathodes for lithium-ion batteries

Numerous studies have addressed the low electrical conductivity of Li Ni Co Mn O (Ni-rich NCM). Among these approaches, surface treatment using multiwalled carbon nanotubes (MWCNTs) has emerged as a promising strategy for enhancing the depolarization of Ni-rich NCM and improving its electrochemical...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2024-12, Vol.27 (1), p.254-260
Main Authors: Na, Sungmin, Park, Junwoo, An, Hyunjin, Lee, Seonhwa, Yu, Byongyong, Park, Kwangjin
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c585-ef7a152e60f459d37afe8cb606cf0c01158675ec2c3ef6dd847dd1174af302b03
container_end_page 260
container_issue 1
container_start_page 254
container_title Physical chemistry chemical physics : PCCP
container_volume 27
creator Na, Sungmin
Park, Junwoo
An, Hyunjin
Lee, Seonhwa
Yu, Byongyong
Park, Kwangjin
description Numerous studies have addressed the low electrical conductivity of Li Ni Co Mn O (Ni-rich NCM). Among these approaches, surface treatment using multiwalled carbon nanotubes (MWCNTs) has emerged as a promising strategy for enhancing the depolarization of Ni-rich NCM and improving its electrochemical performance. However, MWCNT coatings applied by various methods often result in agglomeration and increase the ion-transfer resistance of the coating layer, leading to degraded electrochemical performance. In this study, 1D and 2D network structures are assembled on Ni-rich NCM surfaces using a MWCNT solution dispersed in ethanol solvent by an incipient method. The resulting highly conductive network structure facilitates electron movement without interfering with Li-ion transport, enhancing the depolarization of Ni-rich NCM and enabling high electrochemical performance. The 1D and 2D network structure coated Ni-rich NCM exhibits an excellent rate capability of 87.64% at 3C/0.2C and a cycle retention of 94.53% after 50 cycles at 1C/1C. Moreover, the incipient method used herein effectively maximizes the electrochemical performance with less coating weight than other methods. These findings highlight the potential of the 1D and 2D network structure coated Ni-rich NCM for advanced energy storage applications.
doi_str_mv 10.1039/d4cp03144j
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4CP03144J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39635765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585-ef7a152e60f459d37afe8cb606cf0c01158675ec2c3ef6dd847dd1174af302b03</originalsourceid><addsrcrecordid>eNo9UMlOwzAUtBAISuHCB6B3Rkp5jpekR9SyqiwS3CvHCzG0SWUnIL6HH8Wl0NPM6M0bjYaQE4ojimx8brheIaOcv-2QAeWSZWMs-e6WF_KAHMb4hohUULZPDthYMlFIMSDfz_3KBt8G0G1jet35Dwt0CqoxkE-hsd1nG94hdiHd-mANaBWqtsl0q7qkHnwWvK5h5oGOUCQNOCpLmLQJsYT7Zo0cHiEHFaH2r3Xm07vxzvUxsZTX1a2xEVwqsfBd7fvl2gKV6rpUzcYjsufUItrjPxySl6vLl8lNNnu8vp1czDItSpFZVygqcivRcTE2rFDOlrqSKLVDjZSKUhbC6lwz66QxJS-MobTgyjHMK2RDcraJ1aGNMVg3XwW_VOFrTnG-Hno-5ZOn36Hvkvl0Y1711dKarfV_WfYDeyJ24A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superior conductive 1D and 2D network structured carbon-coated Ni-rich Li 1.05 Ni 0.88 Co 0.08 Mn 0.04 O 2 as high-ion-diffusion cathodes for lithium-ion batteries</title><source>Royal Society of Chemistry</source><creator>Na, Sungmin ; Park, Junwoo ; An, Hyunjin ; Lee, Seonhwa ; Yu, Byongyong ; Park, Kwangjin</creator><creatorcontrib>Na, Sungmin ; Park, Junwoo ; An, Hyunjin ; Lee, Seonhwa ; Yu, Byongyong ; Park, Kwangjin</creatorcontrib><description>Numerous studies have addressed the low electrical conductivity of Li Ni Co Mn O (Ni-rich NCM). Among these approaches, surface treatment using multiwalled carbon nanotubes (MWCNTs) has emerged as a promising strategy for enhancing the depolarization of Ni-rich NCM and improving its electrochemical performance. However, MWCNT coatings applied by various methods often result in agglomeration and increase the ion-transfer resistance of the coating layer, leading to degraded electrochemical performance. In this study, 1D and 2D network structures are assembled on Ni-rich NCM surfaces using a MWCNT solution dispersed in ethanol solvent by an incipient method. The resulting highly conductive network structure facilitates electron movement without interfering with Li-ion transport, enhancing the depolarization of Ni-rich NCM and enabling high electrochemical performance. The 1D and 2D network structure coated Ni-rich NCM exhibits an excellent rate capability of 87.64% at 3C/0.2C and a cycle retention of 94.53% after 50 cycles at 1C/1C. Moreover, the incipient method used herein effectively maximizes the electrochemical performance with less coating weight than other methods. These findings highlight the potential of the 1D and 2D network structure coated Ni-rich NCM for advanced energy storage applications.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp03144j</identifier><identifier>PMID: 39635765</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2024-12, Vol.27 (1), p.254-260</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c585-ef7a152e60f459d37afe8cb606cf0c01158675ec2c3ef6dd847dd1174af302b03</cites><orcidid>0000-0002-1446-8822 ; 0000-0001-5509-0216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39635765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Na, Sungmin</creatorcontrib><creatorcontrib>Park, Junwoo</creatorcontrib><creatorcontrib>An, Hyunjin</creatorcontrib><creatorcontrib>Lee, Seonhwa</creatorcontrib><creatorcontrib>Yu, Byongyong</creatorcontrib><creatorcontrib>Park, Kwangjin</creatorcontrib><title>Superior conductive 1D and 2D network structured carbon-coated Ni-rich Li 1.05 Ni 0.88 Co 0.08 Mn 0.04 O 2 as high-ion-diffusion cathodes for lithium-ion batteries</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Numerous studies have addressed the low electrical conductivity of Li Ni Co Mn O (Ni-rich NCM). Among these approaches, surface treatment using multiwalled carbon nanotubes (MWCNTs) has emerged as a promising strategy for enhancing the depolarization of Ni-rich NCM and improving its electrochemical performance. However, MWCNT coatings applied by various methods often result in agglomeration and increase the ion-transfer resistance of the coating layer, leading to degraded electrochemical performance. In this study, 1D and 2D network structures are assembled on Ni-rich NCM surfaces using a MWCNT solution dispersed in ethanol solvent by an incipient method. The resulting highly conductive network structure facilitates electron movement without interfering with Li-ion transport, enhancing the depolarization of Ni-rich NCM and enabling high electrochemical performance. The 1D and 2D network structure coated Ni-rich NCM exhibits an excellent rate capability of 87.64% at 3C/0.2C and a cycle retention of 94.53% after 50 cycles at 1C/1C. Moreover, the incipient method used herein effectively maximizes the electrochemical performance with less coating weight than other methods. These findings highlight the potential of the 1D and 2D network structure coated Ni-rich NCM for advanced energy storage applications.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMlOwzAUtBAISuHCB6B3Rkp5jpekR9SyqiwS3CvHCzG0SWUnIL6HH8Wl0NPM6M0bjYaQE4ojimx8brheIaOcv-2QAeWSZWMs-e6WF_KAHMb4hohUULZPDthYMlFIMSDfz_3KBt8G0G1jet35Dwt0CqoxkE-hsd1nG94hdiHd-mANaBWqtsl0q7qkHnwWvK5h5oGOUCQNOCpLmLQJsYT7Zo0cHiEHFaH2r3Xm07vxzvUxsZTX1a2xEVwqsfBd7fvl2gKV6rpUzcYjsufUItrjPxySl6vLl8lNNnu8vp1czDItSpFZVygqcivRcTE2rFDOlrqSKLVDjZSKUhbC6lwz66QxJS-MobTgyjHMK2RDcraJ1aGNMVg3XwW_VOFrTnG-Hno-5ZOn36Hvkvl0Y1711dKarfV_WfYDeyJ24A</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Na, Sungmin</creator><creator>Park, Junwoo</creator><creator>An, Hyunjin</creator><creator>Lee, Seonhwa</creator><creator>Yu, Byongyong</creator><creator>Park, Kwangjin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1446-8822</orcidid><orcidid>https://orcid.org/0000-0001-5509-0216</orcidid></search><sort><creationdate>20241218</creationdate><title>Superior conductive 1D and 2D network structured carbon-coated Ni-rich Li 1.05 Ni 0.88 Co 0.08 Mn 0.04 O 2 as high-ion-diffusion cathodes for lithium-ion batteries</title><author>Na, Sungmin ; Park, Junwoo ; An, Hyunjin ; Lee, Seonhwa ; Yu, Byongyong ; Park, Kwangjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585-ef7a152e60f459d37afe8cb606cf0c01158675ec2c3ef6dd847dd1174af302b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Na, Sungmin</creatorcontrib><creatorcontrib>Park, Junwoo</creatorcontrib><creatorcontrib>An, Hyunjin</creatorcontrib><creatorcontrib>Lee, Seonhwa</creatorcontrib><creatorcontrib>Yu, Byongyong</creatorcontrib><creatorcontrib>Park, Kwangjin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Na, Sungmin</au><au>Park, Junwoo</au><au>An, Hyunjin</au><au>Lee, Seonhwa</au><au>Yu, Byongyong</au><au>Park, Kwangjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior conductive 1D and 2D network structured carbon-coated Ni-rich Li 1.05 Ni 0.88 Co 0.08 Mn 0.04 O 2 as high-ion-diffusion cathodes for lithium-ion batteries</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>27</volume><issue>1</issue><spage>254</spage><epage>260</epage><pages>254-260</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Numerous studies have addressed the low electrical conductivity of Li Ni Co Mn O (Ni-rich NCM). Among these approaches, surface treatment using multiwalled carbon nanotubes (MWCNTs) has emerged as a promising strategy for enhancing the depolarization of Ni-rich NCM and improving its electrochemical performance. However, MWCNT coatings applied by various methods often result in agglomeration and increase the ion-transfer resistance of the coating layer, leading to degraded electrochemical performance. In this study, 1D and 2D network structures are assembled on Ni-rich NCM surfaces using a MWCNT solution dispersed in ethanol solvent by an incipient method. The resulting highly conductive network structure facilitates electron movement without interfering with Li-ion transport, enhancing the depolarization of Ni-rich NCM and enabling high electrochemical performance. The 1D and 2D network structure coated Ni-rich NCM exhibits an excellent rate capability of 87.64% at 3C/0.2C and a cycle retention of 94.53% after 50 cycles at 1C/1C. Moreover, the incipient method used herein effectively maximizes the electrochemical performance with less coating weight than other methods. These findings highlight the potential of the 1D and 2D network structure coated Ni-rich NCM for advanced energy storage applications.</abstract><cop>England</cop><pmid>39635765</pmid><doi>10.1039/d4cp03144j</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1446-8822</orcidid><orcidid>https://orcid.org/0000-0001-5509-0216</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-12, Vol.27 (1), p.254-260
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_D4CP03144J
source Royal Society of Chemistry
title Superior conductive 1D and 2D network structured carbon-coated Ni-rich Li 1.05 Ni 0.88 Co 0.08 Mn 0.04 O 2 as high-ion-diffusion cathodes for lithium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20conductive%201D%20and%202D%20network%20structured%20carbon-coated%20Ni-rich%20Li%201.05%20Ni%200.88%20Co%200.08%20Mn%200.04%20O%202%20as%20high-ion-diffusion%20cathodes%20for%20lithium-ion%20batteries&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Na,%20Sungmin&rft.date=2024-12-18&rft.volume=27&rft.issue=1&rft.spage=254&rft.epage=260&rft.pages=254-260&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp03144j&rft_dat=%3Cpubmed_cross%3E39635765%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c585-ef7a152e60f459d37afe8cb606cf0c01158675ec2c3ef6dd847dd1174af302b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/39635765&rfr_iscdi=true