Loading…

Local hydroxide ion enrichment at the inner surface of lacunaris perovskite nanotubes facilitates the oxygen evolution reaction

Numerous strategies have been devised to optimize the intrinsic activity of perovskite oxides for the oxygen evolution reaction (OER). However, conventional synthetic routes typically yield limited numbers of active sites and low mass activities. More critically, the sluggish mass transfer poses a h...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2024-09, Vol.16 (35), p.16458-16466
Main Authors: Liu, Lin-Bo, Liu, Shuo, Tang, Yu-Feng, Sun, Yifei, Fu, Xian-Zhu, Luo, Jing-Li, Liu, Subiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c226t-55a37b921f25be88cb6b4d89aab1f4b3da0890efef27473548b86102d59ea0e23
container_end_page 16466
container_issue 35
container_start_page 16458
container_title Nanoscale
container_volume 16
creator Liu, Lin-Bo
Liu, Shuo
Tang, Yu-Feng
Sun, Yifei
Fu, Xian-Zhu
Luo, Jing-Li
Liu, Subiao
description Numerous strategies have been devised to optimize the intrinsic activity of perovskite oxides for the oxygen evolution reaction (OER). However, conventional synthetic routes typically yield limited numbers of active sites and low mass activities. More critically, the sluggish mass transfer poses a huge challenge, particularly under high polarization conditions, which impedes the overall reaction kinetics. Herein, lacunaris La 0.5 Pr 0.25 Ba 0.25 Co 0.8 Ni 0.2 O 3− δ nanotubes (LPBCN-NTs) were prepared via electrospinning and post-annealing, which exhibited a small overpotential of 358.8 mV at 10 mA cm −2 and a lower Tafel slope of 71.46 mV dec −1 , superior to the values for the same stoichiometric LPBCN nanoparticles and solid nanofibers, state-of-the-art counterparts and commercial IrO 2 . Density functional theory calculations revealed that the surface oxygen vacancies in LPBCN-NTs significantly lowered the OH − adsorption energy, while finite element analysis indicated that the precisely constructed lacunaris NT structure enriched the OH − concentration at its inner surface by an order of magnitude, both of which collectively resulted in accelerated OER kinetics. This study clarifies the underlying mechanism of how the lacunaris nanotubular architecture and the surface oxygen vacancies of perovskite oxides affect heterocatalysis, which undoubtedly paves the way to handling the long-standing issues of sluggish mass transfer rates and poor intrinsic catalytic activity. Lacunaris perovskite oxide nanotubes were prepared by electrospinning, which significantly facilitated the adsorption of hydroxide ions and enriched their local concentration at the inner surface, collectively accelerating the OER kinetics.
doi_str_mv 10.1039/d4nr02783c
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4NR02783C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103132112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-55a37b921f25be88cb6b4d89aab1f4b3da0890efef27473548b86102d59ea0e23</originalsourceid><addsrcrecordid>eNpdkUtrGzEUhUVJqB23m-5TBNmEgFu95rUMzhNMCqVdD5LmTi1nLDmSxtir_PVqaseF3I0OV989V-gg9IWSb5Tw6nsjrCesKLn-gMaMCDLlvGAnR52LEToLYUlIXvGcf0QjXtEsKws2Rq9zp2WHF7vGu61pABtnMVhv9GIFNmIZcVykrrXgceh9KzVg1-JO6t5KbwJeg3eb8GwiYCuti72CgBNmOhNlTHqYd9vdH0jGG9f1cVjhQepBfEKnrewCfD6cE_T77vbX7GE6_3H_OLueTzVjeZxmmeSFqhhtWaagLLXKlWjKSkpFW6F4I0lZEWihZYUoeCZKVeaUsCarQBJgfIIu975r7156CLFemaCh66QF14eak0qIgqZK6MU7dOl6b9Prap7-m3JG6WB4tae0dyF4aOu1NyvpdzUl9RBLfSOefv6LZZbgrwfLXq2gOaJvOSTgfA_4oI-3_3PlfwEfFpQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103132112</pqid></control><display><type>article</type><title>Local hydroxide ion enrichment at the inner surface of lacunaris perovskite nanotubes facilitates the oxygen evolution reaction</title><source>Royal Society of Chemistry</source><creator>Liu, Lin-Bo ; Liu, Shuo ; Tang, Yu-Feng ; Sun, Yifei ; Fu, Xian-Zhu ; Luo, Jing-Li ; Liu, Subiao</creator><creatorcontrib>Liu, Lin-Bo ; Liu, Shuo ; Tang, Yu-Feng ; Sun, Yifei ; Fu, Xian-Zhu ; Luo, Jing-Li ; Liu, Subiao</creatorcontrib><description>Numerous strategies have been devised to optimize the intrinsic activity of perovskite oxides for the oxygen evolution reaction (OER). However, conventional synthetic routes typically yield limited numbers of active sites and low mass activities. More critically, the sluggish mass transfer poses a huge challenge, particularly under high polarization conditions, which impedes the overall reaction kinetics. Herein, lacunaris La 0.5 Pr 0.25 Ba 0.25 Co 0.8 Ni 0.2 O 3− δ nanotubes (LPBCN-NTs) were prepared via electrospinning and post-annealing, which exhibited a small overpotential of 358.8 mV at 10 mA cm −2 and a lower Tafel slope of 71.46 mV dec −1 , superior to the values for the same stoichiometric LPBCN nanoparticles and solid nanofibers, state-of-the-art counterparts and commercial IrO 2 . Density functional theory calculations revealed that the surface oxygen vacancies in LPBCN-NTs significantly lowered the OH − adsorption energy, while finite element analysis indicated that the precisely constructed lacunaris NT structure enriched the OH − concentration at its inner surface by an order of magnitude, both of which collectively resulted in accelerated OER kinetics. This study clarifies the underlying mechanism of how the lacunaris nanotubular architecture and the surface oxygen vacancies of perovskite oxides affect heterocatalysis, which undoubtedly paves the way to handling the long-standing issues of sluggish mass transfer rates and poor intrinsic catalytic activity. Lacunaris perovskite oxide nanotubes were prepared by electrospinning, which significantly facilitated the adsorption of hydroxide ions and enriched their local concentration at the inner surface, collectively accelerating the OER kinetics.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr02783c</identifier><identifier>PMID: 39155872</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalytic activity ; Density functional theory ; Finite element method ; Mass transfer ; Nanotubes ; Oxygen enrichment ; Oxygen evolution reactions ; Perovskites ; Reaction kinetics</subject><ispartof>Nanoscale, 2024-09, Vol.16 (35), p.16458-16466</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-55a37b921f25be88cb6b4d89aab1f4b3da0890efef27473548b86102d59ea0e23</cites><orcidid>0009-0008-1151-6623 ; 0000-0002-2465-7280 ; 0000-0002-2346-8402 ; 0000-0001-6075-3301 ; 0000-0003-1843-8927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39155872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lin-Bo</creatorcontrib><creatorcontrib>Liu, Shuo</creatorcontrib><creatorcontrib>Tang, Yu-Feng</creatorcontrib><creatorcontrib>Sun, Yifei</creatorcontrib><creatorcontrib>Fu, Xian-Zhu</creatorcontrib><creatorcontrib>Luo, Jing-Li</creatorcontrib><creatorcontrib>Liu, Subiao</creatorcontrib><title>Local hydroxide ion enrichment at the inner surface of lacunaris perovskite nanotubes facilitates the oxygen evolution reaction</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Numerous strategies have been devised to optimize the intrinsic activity of perovskite oxides for the oxygen evolution reaction (OER). However, conventional synthetic routes typically yield limited numbers of active sites and low mass activities. More critically, the sluggish mass transfer poses a huge challenge, particularly under high polarization conditions, which impedes the overall reaction kinetics. Herein, lacunaris La 0.5 Pr 0.25 Ba 0.25 Co 0.8 Ni 0.2 O 3− δ nanotubes (LPBCN-NTs) were prepared via electrospinning and post-annealing, which exhibited a small overpotential of 358.8 mV at 10 mA cm −2 and a lower Tafel slope of 71.46 mV dec −1 , superior to the values for the same stoichiometric LPBCN nanoparticles and solid nanofibers, state-of-the-art counterparts and commercial IrO 2 . Density functional theory calculations revealed that the surface oxygen vacancies in LPBCN-NTs significantly lowered the OH − adsorption energy, while finite element analysis indicated that the precisely constructed lacunaris NT structure enriched the OH − concentration at its inner surface by an order of magnitude, both of which collectively resulted in accelerated OER kinetics. This study clarifies the underlying mechanism of how the lacunaris nanotubular architecture and the surface oxygen vacancies of perovskite oxides affect heterocatalysis, which undoubtedly paves the way to handling the long-standing issues of sluggish mass transfer rates and poor intrinsic catalytic activity. Lacunaris perovskite oxide nanotubes were prepared by electrospinning, which significantly facilitated the adsorption of hydroxide ions and enriched their local concentration at the inner surface, collectively accelerating the OER kinetics.</description><subject>Catalytic activity</subject><subject>Density functional theory</subject><subject>Finite element method</subject><subject>Mass transfer</subject><subject>Nanotubes</subject><subject>Oxygen enrichment</subject><subject>Oxygen evolution reactions</subject><subject>Perovskites</subject><subject>Reaction kinetics</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUtrGzEUhUVJqB23m-5TBNmEgFu95rUMzhNMCqVdD5LmTi1nLDmSxtir_PVqaseF3I0OV989V-gg9IWSb5Tw6nsjrCesKLn-gMaMCDLlvGAnR52LEToLYUlIXvGcf0QjXtEsKws2Rq9zp2WHF7vGu61pABtnMVhv9GIFNmIZcVykrrXgceh9KzVg1-JO6t5KbwJeg3eb8GwiYCuti72CgBNmOhNlTHqYd9vdH0jGG9f1cVjhQepBfEKnrewCfD6cE_T77vbX7GE6_3H_OLueTzVjeZxmmeSFqhhtWaagLLXKlWjKSkpFW6F4I0lZEWihZYUoeCZKVeaUsCarQBJgfIIu975r7156CLFemaCh66QF14eak0qIgqZK6MU7dOl6b9Prap7-m3JG6WB4tae0dyF4aOu1NyvpdzUl9RBLfSOefv6LZZbgrwfLXq2gOaJvOSTgfA_4oI-3_3PlfwEfFpQQ</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Liu, Lin-Bo</creator><creator>Liu, Shuo</creator><creator>Tang, Yu-Feng</creator><creator>Sun, Yifei</creator><creator>Fu, Xian-Zhu</creator><creator>Luo, Jing-Li</creator><creator>Liu, Subiao</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-1151-6623</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid><orcidid>https://orcid.org/0000-0002-2346-8402</orcidid><orcidid>https://orcid.org/0000-0001-6075-3301</orcidid><orcidid>https://orcid.org/0000-0003-1843-8927</orcidid></search><sort><creationdate>20240912</creationdate><title>Local hydroxide ion enrichment at the inner surface of lacunaris perovskite nanotubes facilitates the oxygen evolution reaction</title><author>Liu, Lin-Bo ; Liu, Shuo ; Tang, Yu-Feng ; Sun, Yifei ; Fu, Xian-Zhu ; Luo, Jing-Li ; Liu, Subiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-55a37b921f25be88cb6b4d89aab1f4b3da0890efef27473548b86102d59ea0e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalytic activity</topic><topic>Density functional theory</topic><topic>Finite element method</topic><topic>Mass transfer</topic><topic>Nanotubes</topic><topic>Oxygen enrichment</topic><topic>Oxygen evolution reactions</topic><topic>Perovskites</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lin-Bo</creatorcontrib><creatorcontrib>Liu, Shuo</creatorcontrib><creatorcontrib>Tang, Yu-Feng</creatorcontrib><creatorcontrib>Sun, Yifei</creatorcontrib><creatorcontrib>Fu, Xian-Zhu</creatorcontrib><creatorcontrib>Luo, Jing-Li</creatorcontrib><creatorcontrib>Liu, Subiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lin-Bo</au><au>Liu, Shuo</au><au>Tang, Yu-Feng</au><au>Sun, Yifei</au><au>Fu, Xian-Zhu</au><au>Luo, Jing-Li</au><au>Liu, Subiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local hydroxide ion enrichment at the inner surface of lacunaris perovskite nanotubes facilitates the oxygen evolution reaction</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-09-12</date><risdate>2024</risdate><volume>16</volume><issue>35</issue><spage>16458</spage><epage>16466</epage><pages>16458-16466</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>Numerous strategies have been devised to optimize the intrinsic activity of perovskite oxides for the oxygen evolution reaction (OER). However, conventional synthetic routes typically yield limited numbers of active sites and low mass activities. More critically, the sluggish mass transfer poses a huge challenge, particularly under high polarization conditions, which impedes the overall reaction kinetics. Herein, lacunaris La 0.5 Pr 0.25 Ba 0.25 Co 0.8 Ni 0.2 O 3− δ nanotubes (LPBCN-NTs) were prepared via electrospinning and post-annealing, which exhibited a small overpotential of 358.8 mV at 10 mA cm −2 and a lower Tafel slope of 71.46 mV dec −1 , superior to the values for the same stoichiometric LPBCN nanoparticles and solid nanofibers, state-of-the-art counterparts and commercial IrO 2 . Density functional theory calculations revealed that the surface oxygen vacancies in LPBCN-NTs significantly lowered the OH − adsorption energy, while finite element analysis indicated that the precisely constructed lacunaris NT structure enriched the OH − concentration at its inner surface by an order of magnitude, both of which collectively resulted in accelerated OER kinetics. This study clarifies the underlying mechanism of how the lacunaris nanotubular architecture and the surface oxygen vacancies of perovskite oxides affect heterocatalysis, which undoubtedly paves the way to handling the long-standing issues of sluggish mass transfer rates and poor intrinsic catalytic activity. Lacunaris perovskite oxide nanotubes were prepared by electrospinning, which significantly facilitated the adsorption of hydroxide ions and enriched their local concentration at the inner surface, collectively accelerating the OER kinetics.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39155872</pmid><doi>10.1039/d4nr02783c</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0008-1151-6623</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid><orcidid>https://orcid.org/0000-0002-2346-8402</orcidid><orcidid>https://orcid.org/0000-0001-6075-3301</orcidid><orcidid>https://orcid.org/0000-0003-1843-8927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-09, Vol.16 (35), p.16458-16466
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_D4NR02783C
source Royal Society of Chemistry
subjects Catalytic activity
Density functional theory
Finite element method
Mass transfer
Nanotubes
Oxygen enrichment
Oxygen evolution reactions
Perovskites
Reaction kinetics
title Local hydroxide ion enrichment at the inner surface of lacunaris perovskite nanotubes facilitates the oxygen evolution reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A41%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20hydroxide%20ion%20enrichment%20at%20the%20inner%20surface%20of%20lacunaris%20perovskite%20nanotubes%20facilitates%20the%20oxygen%20evolution%20reaction&rft.jtitle=Nanoscale&rft.au=Liu,%20Lin-Bo&rft.date=2024-09-12&rft.volume=16&rft.issue=35&rft.spage=16458&rft.epage=16466&rft.pages=16458-16466&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr02783c&rft_dat=%3Cproquest_cross%3E3103132112%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c226t-55a37b921f25be88cb6b4d89aab1f4b3da0890efef27473548b86102d59ea0e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103132112&rft_id=info:pmid/39155872&rfr_iscdi=true