Loading…
Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production
Antimony sulfoselenide (Sb (S,Se) ) is a promising sunlight absorber material for solar energy conversion in photovoltaic (PV) cells and photoelectrochemical (PEC) photoelectrodes due to its excellent photoelectric properties. However, the obtained thin-film and back contact properties significantly...
Saved in:
Published in: | Chemical science (Cambridge) 2024-12, Vol.16 (1), p.393-409 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c583-291e49b73d796535e205848bbf8b970192d36cdea5a474f058da76cedfcd58eb3 |
container_end_page | 409 |
container_issue | 1 |
container_start_page | 393 |
container_title | Chemical science (Cambridge) |
container_volume | 16 |
creator | Aziz, Hafiz Sartaj Imran, Tahir Ahmad, Munir Chen, Guo-Jie Luo, Ping Ren, Dong-Lou Zou, Bing-Suo Hu, Ju-Guang Su, Zheng-Hua Yan, Pei-Guang Liang, Guang-Xing Chen, Shuo |
description | Antimony sulfoselenide (Sb
(S,Se)
) is a promising sunlight absorber material for solar energy conversion in photovoltaic (PV) cells and photoelectrochemical (PEC) photoelectrodes due to its excellent photoelectric properties. However, the obtained thin-film and back contact properties significantly influence the PEC performance of photocathodes, causing severe bulk recombination, carrier transport loss, and deteriorating half-cell solar-to-hydrogen (HC-STH) efficiency. This study introduces an intriguing dual back interface engineering strategy for Sb
(S,Se)
photocathodes by incorporating an intermediate MoO
layer and a secondary carrier transport channel of Au to strengthen charge carrier dynamics. The synergistic assembly of these dual back interface layers improves the growth kinetics and achieves the optimal orientation of Sb
(S,Se)
thin films by increasing substrate wettability. Moreover, by shortening the back contact barrier height and passivating defect-assisted recombinations, these dual back underlayers simultaneously enhance carrier transport and separation efficiencies. As a result, the photocurrent density of the champion Sb
(S,Se)
photocathode increases from 5.89 to 32.60 mA cm
, and the HC-STH conversion efficiency improves significantly from 0.30% to 3.58%, representing the highest value for Sb
(S,Se)
-based photocathodes. This work highlights the effectiveness of dual back interface engineering in promoting the PEC performance of chalcogenide photocathodes for solar hydrogen evolution applications. |
doi_str_mv | 10.1039/d4sc05893c |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4SC05893C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39629483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583-291e49b73d796535e205848bbf8b970192d36cdea5a474f058da76cedfcd58eb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0Eoqh0wwegWQIikMTOw0uU8pIqsUj3kWOPE0MTR3a6KF_AZxModDYz0pwZ6R5CLqLwLgopv1fMyzDJOZVH5CwOWRSkCeXHhzkOZ2Th_Xs4FaVREmenZEZ5GnOW0zPytdyKDdRCfoDpR3RaSATsG9MjOtM3YIfRdOYTFchWuAZBCucMOlC7XnRG-ukOyhpiuCpvS7wGCkNrRyvF2FqFHrR1gFobabAfwduNcNDulLMN9jA4q7ZyNLY_JydabDwu_vqcrJ8e18VLsHp7fi0eVoFMchrEPELG64yqjE85E4yn7Cyva53XPAsjHiuaSoUiESxjeloqkaUSlZYqybGmc3Kzfyud9d6hrgZnOuF2VRRWP0KrJSuLX6HFBF_u4WFbd6gO6L8--g3NyXJW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production</title><source>PubMed Central</source><creator>Aziz, Hafiz Sartaj ; Imran, Tahir ; Ahmad, Munir ; Chen, Guo-Jie ; Luo, Ping ; Ren, Dong-Lou ; Zou, Bing-Suo ; Hu, Ju-Guang ; Su, Zheng-Hua ; Yan, Pei-Guang ; Liang, Guang-Xing ; Chen, Shuo</creator><creatorcontrib>Aziz, Hafiz Sartaj ; Imran, Tahir ; Ahmad, Munir ; Chen, Guo-Jie ; Luo, Ping ; Ren, Dong-Lou ; Zou, Bing-Suo ; Hu, Ju-Guang ; Su, Zheng-Hua ; Yan, Pei-Guang ; Liang, Guang-Xing ; Chen, Shuo</creatorcontrib><description>Antimony sulfoselenide (Sb
(S,Se)
) is a promising sunlight absorber material for solar energy conversion in photovoltaic (PV) cells and photoelectrochemical (PEC) photoelectrodes due to its excellent photoelectric properties. However, the obtained thin-film and back contact properties significantly influence the PEC performance of photocathodes, causing severe bulk recombination, carrier transport loss, and deteriorating half-cell solar-to-hydrogen (HC-STH) efficiency. This study introduces an intriguing dual back interface engineering strategy for Sb
(S,Se)
photocathodes by incorporating an intermediate MoO
layer and a secondary carrier transport channel of Au to strengthen charge carrier dynamics. The synergistic assembly of these dual back interface layers improves the growth kinetics and achieves the optimal orientation of Sb
(S,Se)
thin films by increasing substrate wettability. Moreover, by shortening the back contact barrier height and passivating defect-assisted recombinations, these dual back underlayers simultaneously enhance carrier transport and separation efficiencies. As a result, the photocurrent density of the champion Sb
(S,Se)
photocathode increases from 5.89 to 32.60 mA cm
, and the HC-STH conversion efficiency improves significantly from 0.30% to 3.58%, representing the highest value for Sb
(S,Se)
-based photocathodes. This work highlights the effectiveness of dual back interface engineering in promoting the PEC performance of chalcogenide photocathodes for solar hydrogen evolution applications.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc05893c</identifier><identifier>PMID: 39629483</identifier><language>eng</language><publisher>England</publisher><ispartof>Chemical science (Cambridge), 2024-12, Vol.16 (1), p.393-409</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c583-291e49b73d796535e205848bbf8b970192d36cdea5a474f058da76cedfcd58eb3</cites><orcidid>0000-0002-9033-4885 ; 0000-0002-8969-8948 ; 0000-0001-5228-0882 ; 0000-0003-4561-4711 ; 0000-0003-2137-3933 ; 0000-0003-1512-376X ; 0000-0002-0657-8423 ; 0000-0002-1169-4197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39629483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Imran, Tahir</creatorcontrib><creatorcontrib>Ahmad, Munir</creatorcontrib><creatorcontrib>Chen, Guo-Jie</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><creatorcontrib>Ren, Dong-Lou</creatorcontrib><creatorcontrib>Zou, Bing-Suo</creatorcontrib><creatorcontrib>Hu, Ju-Guang</creatorcontrib><creatorcontrib>Su, Zheng-Hua</creatorcontrib><creatorcontrib>Yan, Pei-Guang</creatorcontrib><creatorcontrib>Liang, Guang-Xing</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><title>Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Antimony sulfoselenide (Sb
(S,Se)
) is a promising sunlight absorber material for solar energy conversion in photovoltaic (PV) cells and photoelectrochemical (PEC) photoelectrodes due to its excellent photoelectric properties. However, the obtained thin-film and back contact properties significantly influence the PEC performance of photocathodes, causing severe bulk recombination, carrier transport loss, and deteriorating half-cell solar-to-hydrogen (HC-STH) efficiency. This study introduces an intriguing dual back interface engineering strategy for Sb
(S,Se)
photocathodes by incorporating an intermediate MoO
layer and a secondary carrier transport channel of Au to strengthen charge carrier dynamics. The synergistic assembly of these dual back interface layers improves the growth kinetics and achieves the optimal orientation of Sb
(S,Se)
thin films by increasing substrate wettability. Moreover, by shortening the back contact barrier height and passivating defect-assisted recombinations, these dual back underlayers simultaneously enhance carrier transport and separation efficiencies. As a result, the photocurrent density of the champion Sb
(S,Se)
photocathode increases from 5.89 to 32.60 mA cm
, and the HC-STH conversion efficiency improves significantly from 0.30% to 3.58%, representing the highest value for Sb
(S,Se)
-based photocathodes. This work highlights the effectiveness of dual back interface engineering in promoting the PEC performance of chalcogenide photocathodes for solar hydrogen evolution applications.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0Eoqh0wwegWQIikMTOw0uU8pIqsUj3kWOPE0MTR3a6KF_AZxModDYz0pwZ6R5CLqLwLgopv1fMyzDJOZVH5CwOWRSkCeXHhzkOZ2Th_Xs4FaVREmenZEZ5GnOW0zPytdyKDdRCfoDpR3RaSATsG9MjOtM3YIfRdOYTFchWuAZBCucMOlC7XnRG-ukOyhpiuCpvS7wGCkNrRyvF2FqFHrR1gFobabAfwduNcNDulLMN9jA4q7ZyNLY_JydabDwu_vqcrJ8e18VLsHp7fi0eVoFMchrEPELG64yqjE85E4yn7Cyva53XPAsjHiuaSoUiESxjeloqkaUSlZYqybGmc3Kzfyud9d6hrgZnOuF2VRRWP0KrJSuLX6HFBF_u4WFbd6gO6L8--g3NyXJW</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Aziz, Hafiz Sartaj</creator><creator>Imran, Tahir</creator><creator>Ahmad, Munir</creator><creator>Chen, Guo-Jie</creator><creator>Luo, Ping</creator><creator>Ren, Dong-Lou</creator><creator>Zou, Bing-Suo</creator><creator>Hu, Ju-Guang</creator><creator>Su, Zheng-Hua</creator><creator>Yan, Pei-Guang</creator><creator>Liang, Guang-Xing</creator><creator>Chen, Shuo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9033-4885</orcidid><orcidid>https://orcid.org/0000-0002-8969-8948</orcidid><orcidid>https://orcid.org/0000-0001-5228-0882</orcidid><orcidid>https://orcid.org/0000-0003-4561-4711</orcidid><orcidid>https://orcid.org/0000-0003-2137-3933</orcidid><orcidid>https://orcid.org/0000-0003-1512-376X</orcidid><orcidid>https://orcid.org/0000-0002-0657-8423</orcidid><orcidid>https://orcid.org/0000-0002-1169-4197</orcidid></search><sort><creationdate>20241218</creationdate><title>Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production</title><author>Aziz, Hafiz Sartaj ; Imran, Tahir ; Ahmad, Munir ; Chen, Guo-Jie ; Luo, Ping ; Ren, Dong-Lou ; Zou, Bing-Suo ; Hu, Ju-Guang ; Su, Zheng-Hua ; Yan, Pei-Guang ; Liang, Guang-Xing ; Chen, Shuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583-291e49b73d796535e205848bbf8b970192d36cdea5a474f058da76cedfcd58eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Imran, Tahir</creatorcontrib><creatorcontrib>Ahmad, Munir</creatorcontrib><creatorcontrib>Chen, Guo-Jie</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><creatorcontrib>Ren, Dong-Lou</creatorcontrib><creatorcontrib>Zou, Bing-Suo</creatorcontrib><creatorcontrib>Hu, Ju-Guang</creatorcontrib><creatorcontrib>Su, Zheng-Hua</creatorcontrib><creatorcontrib>Yan, Pei-Guang</creatorcontrib><creatorcontrib>Liang, Guang-Xing</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aziz, Hafiz Sartaj</au><au>Imran, Tahir</au><au>Ahmad, Munir</au><au>Chen, Guo-Jie</au><au>Luo, Ping</au><au>Ren, Dong-Lou</au><au>Zou, Bing-Suo</au><au>Hu, Ju-Guang</au><au>Su, Zheng-Hua</au><au>Yan, Pei-Guang</au><au>Liang, Guang-Xing</au><au>Chen, Shuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>393</spage><epage>409</epage><pages>393-409</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Antimony sulfoselenide (Sb
(S,Se)
) is a promising sunlight absorber material for solar energy conversion in photovoltaic (PV) cells and photoelectrochemical (PEC) photoelectrodes due to its excellent photoelectric properties. However, the obtained thin-film and back contact properties significantly influence the PEC performance of photocathodes, causing severe bulk recombination, carrier transport loss, and deteriorating half-cell solar-to-hydrogen (HC-STH) efficiency. This study introduces an intriguing dual back interface engineering strategy for Sb
(S,Se)
photocathodes by incorporating an intermediate MoO
layer and a secondary carrier transport channel of Au to strengthen charge carrier dynamics. The synergistic assembly of these dual back interface layers improves the growth kinetics and achieves the optimal orientation of Sb
(S,Se)
thin films by increasing substrate wettability. Moreover, by shortening the back contact barrier height and passivating defect-assisted recombinations, these dual back underlayers simultaneously enhance carrier transport and separation efficiencies. As a result, the photocurrent density of the champion Sb
(S,Se)
photocathode increases from 5.89 to 32.60 mA cm
, and the HC-STH conversion efficiency improves significantly from 0.30% to 3.58%, representing the highest value for Sb
(S,Se)
-based photocathodes. This work highlights the effectiveness of dual back interface engineering in promoting the PEC performance of chalcogenide photocathodes for solar hydrogen evolution applications.</abstract><cop>England</cop><pmid>39629483</pmid><doi>10.1039/d4sc05893c</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9033-4885</orcidid><orcidid>https://orcid.org/0000-0002-8969-8948</orcidid><orcidid>https://orcid.org/0000-0001-5228-0882</orcidid><orcidid>https://orcid.org/0000-0003-4561-4711</orcidid><orcidid>https://orcid.org/0000-0003-2137-3933</orcidid><orcidid>https://orcid.org/0000-0003-1512-376X</orcidid><orcidid>https://orcid.org/0000-0002-0657-8423</orcidid><orcidid>https://orcid.org/0000-0002-1169-4197</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-12, Vol.16 (1), p.393-409 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4SC05893C |
source | PubMed Central |
title | Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20back%20interface%20engineering%20optimized%20charge%20carrier%20dynamics%20in%20Sb%202%20(S,Se)%203%20photocathodes%20for%20efficient%20solar%20hydrogen%20production&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Aziz,%20Hafiz%20Sartaj&rft.date=2024-12-18&rft.volume=16&rft.issue=1&rft.spage=393&rft.epage=409&rft.pages=393-409&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc05893c&rft_dat=%3Cpubmed_cross%3E39629483%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583-291e49b73d796535e205848bbf8b970192d36cdea5a474f058da76cedfcd58eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/39629483&rfr_iscdi=true |