Loading…

Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production

Antimony sulfoselenide (Sb (S,Se) ) is a promising sunlight absorber material for solar energy conversion in photovoltaic (PV) cells and photoelectrochemical (PEC) photoelectrodes due to its excellent photoelectric properties. However, the obtained thin-film and back contact properties significantly...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2024-12, Vol.16 (1), p.393-409
Main Authors: Aziz, Hafiz Sartaj, Imran, Tahir, Ahmad, Munir, Chen, Guo-Jie, Luo, Ping, Ren, Dong-Lou, Zou, Bing-Suo, Hu, Ju-Guang, Su, Zheng-Hua, Yan, Pei-Guang, Liang, Guang-Xing, Chen, Shuo
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c583-291e49b73d796535e205848bbf8b970192d36cdea5a474f058da76cedfcd58eb3
container_end_page 409
container_issue 1
container_start_page 393
container_title Chemical science (Cambridge)
container_volume 16
creator Aziz, Hafiz Sartaj
Imran, Tahir
Ahmad, Munir
Chen, Guo-Jie
Luo, Ping
Ren, Dong-Lou
Zou, Bing-Suo
Hu, Ju-Guang
Su, Zheng-Hua
Yan, Pei-Guang
Liang, Guang-Xing
Chen, Shuo
description Antimony sulfoselenide (Sb (S,Se) ) is a promising sunlight absorber material for solar energy conversion in photovoltaic (PV) cells and photoelectrochemical (PEC) photoelectrodes due to its excellent photoelectric properties. However, the obtained thin-film and back contact properties significantly influence the PEC performance of photocathodes, causing severe bulk recombination, carrier transport loss, and deteriorating half-cell solar-to-hydrogen (HC-STH) efficiency. This study introduces an intriguing dual back interface engineering strategy for Sb (S,Se) photocathodes by incorporating an intermediate MoO layer and a secondary carrier transport channel of Au to strengthen charge carrier dynamics. The synergistic assembly of these dual back interface layers improves the growth kinetics and achieves the optimal orientation of Sb (S,Se) thin films by increasing substrate wettability. Moreover, by shortening the back contact barrier height and passivating defect-assisted recombinations, these dual back underlayers simultaneously enhance carrier transport and separation efficiencies. As a result, the photocurrent density of the champion Sb (S,Se) photocathode increases from 5.89 to 32.60 mA cm , and the HC-STH conversion efficiency improves significantly from 0.30% to 3.58%, representing the highest value for Sb (S,Se) -based photocathodes. This work highlights the effectiveness of dual back interface engineering in promoting the PEC performance of chalcogenide photocathodes for solar hydrogen evolution applications.
doi_str_mv 10.1039/d4sc05893c
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4SC05893C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39629483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583-291e49b73d796535e205848bbf8b970192d36cdea5a474f058da76cedfcd58eb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0Eoqh0wwegWQIikMTOw0uU8pIqsUj3kWOPE0MTR3a6KF_AZxModDYz0pwZ6R5CLqLwLgopv1fMyzDJOZVH5CwOWRSkCeXHhzkOZ2Th_Xs4FaVREmenZEZ5GnOW0zPytdyKDdRCfoDpR3RaSATsG9MjOtM3YIfRdOYTFchWuAZBCucMOlC7XnRG-ukOyhpiuCpvS7wGCkNrRyvF2FqFHrR1gFobabAfwduNcNDulLMN9jA4q7ZyNLY_JydabDwu_vqcrJ8e18VLsHp7fi0eVoFMchrEPELG64yqjE85E4yn7Cyva53XPAsjHiuaSoUiESxjeloqkaUSlZYqybGmc3Kzfyud9d6hrgZnOuF2VRRWP0KrJSuLX6HFBF_u4WFbd6gO6L8--g3NyXJW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production</title><source>PubMed Central</source><creator>Aziz, Hafiz Sartaj ; Imran, Tahir ; Ahmad, Munir ; Chen, Guo-Jie ; Luo, Ping ; Ren, Dong-Lou ; Zou, Bing-Suo ; Hu, Ju-Guang ; Su, Zheng-Hua ; Yan, Pei-Guang ; Liang, Guang-Xing ; Chen, Shuo</creator><creatorcontrib>Aziz, Hafiz Sartaj ; Imran, Tahir ; Ahmad, Munir ; Chen, Guo-Jie ; Luo, Ping ; Ren, Dong-Lou ; Zou, Bing-Suo ; Hu, Ju-Guang ; Su, Zheng-Hua ; Yan, Pei-Guang ; Liang, Guang-Xing ; Chen, Shuo</creatorcontrib><description>Antimony sulfoselenide (Sb (S,Se) ) is a promising sunlight absorber material for solar energy conversion in photovoltaic (PV) cells and photoelectrochemical (PEC) photoelectrodes due to its excellent photoelectric properties. However, the obtained thin-film and back contact properties significantly influence the PEC performance of photocathodes, causing severe bulk recombination, carrier transport loss, and deteriorating half-cell solar-to-hydrogen (HC-STH) efficiency. This study introduces an intriguing dual back interface engineering strategy for Sb (S,Se) photocathodes by incorporating an intermediate MoO layer and a secondary carrier transport channel of Au to strengthen charge carrier dynamics. The synergistic assembly of these dual back interface layers improves the growth kinetics and achieves the optimal orientation of Sb (S,Se) thin films by increasing substrate wettability. Moreover, by shortening the back contact barrier height and passivating defect-assisted recombinations, these dual back underlayers simultaneously enhance carrier transport and separation efficiencies. As a result, the photocurrent density of the champion Sb (S,Se) photocathode increases from 5.89 to 32.60 mA cm , and the HC-STH conversion efficiency improves significantly from 0.30% to 3.58%, representing the highest value for Sb (S,Se) -based photocathodes. This work highlights the effectiveness of dual back interface engineering in promoting the PEC performance of chalcogenide photocathodes for solar hydrogen evolution applications.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc05893c</identifier><identifier>PMID: 39629483</identifier><language>eng</language><publisher>England</publisher><ispartof>Chemical science (Cambridge), 2024-12, Vol.16 (1), p.393-409</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c583-291e49b73d796535e205848bbf8b970192d36cdea5a474f058da76cedfcd58eb3</cites><orcidid>0000-0002-9033-4885 ; 0000-0002-8969-8948 ; 0000-0001-5228-0882 ; 0000-0003-4561-4711 ; 0000-0003-2137-3933 ; 0000-0003-1512-376X ; 0000-0002-0657-8423 ; 0000-0002-1169-4197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39629483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Imran, Tahir</creatorcontrib><creatorcontrib>Ahmad, Munir</creatorcontrib><creatorcontrib>Chen, Guo-Jie</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><creatorcontrib>Ren, Dong-Lou</creatorcontrib><creatorcontrib>Zou, Bing-Suo</creatorcontrib><creatorcontrib>Hu, Ju-Guang</creatorcontrib><creatorcontrib>Su, Zheng-Hua</creatorcontrib><creatorcontrib>Yan, Pei-Guang</creatorcontrib><creatorcontrib>Liang, Guang-Xing</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><title>Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Antimony sulfoselenide (Sb (S,Se) ) is a promising sunlight absorber material for solar energy conversion in photovoltaic (PV) cells and photoelectrochemical (PEC) photoelectrodes due to its excellent photoelectric properties. However, the obtained thin-film and back contact properties significantly influence the PEC performance of photocathodes, causing severe bulk recombination, carrier transport loss, and deteriorating half-cell solar-to-hydrogen (HC-STH) efficiency. This study introduces an intriguing dual back interface engineering strategy for Sb (S,Se) photocathodes by incorporating an intermediate MoO layer and a secondary carrier transport channel of Au to strengthen charge carrier dynamics. The synergistic assembly of these dual back interface layers improves the growth kinetics and achieves the optimal orientation of Sb (S,Se) thin films by increasing substrate wettability. Moreover, by shortening the back contact barrier height and passivating defect-assisted recombinations, these dual back underlayers simultaneously enhance carrier transport and separation efficiencies. As a result, the photocurrent density of the champion Sb (S,Se) photocathode increases from 5.89 to 32.60 mA cm , and the HC-STH conversion efficiency improves significantly from 0.30% to 3.58%, representing the highest value for Sb (S,Se) -based photocathodes. This work highlights the effectiveness of dual back interface engineering in promoting the PEC performance of chalcogenide photocathodes for solar hydrogen evolution applications.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0Eoqh0wwegWQIikMTOw0uU8pIqsUj3kWOPE0MTR3a6KF_AZxModDYz0pwZ6R5CLqLwLgopv1fMyzDJOZVH5CwOWRSkCeXHhzkOZ2Th_Xs4FaVREmenZEZ5GnOW0zPytdyKDdRCfoDpR3RaSATsG9MjOtM3YIfRdOYTFchWuAZBCucMOlC7XnRG-ukOyhpiuCpvS7wGCkNrRyvF2FqFHrR1gFobabAfwduNcNDulLMN9jA4q7ZyNLY_JydabDwu_vqcrJ8e18VLsHp7fi0eVoFMchrEPELG64yqjE85E4yn7Cyva53XPAsjHiuaSoUiESxjeloqkaUSlZYqybGmc3Kzfyud9d6hrgZnOuF2VRRWP0KrJSuLX6HFBF_u4WFbd6gO6L8--g3NyXJW</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Aziz, Hafiz Sartaj</creator><creator>Imran, Tahir</creator><creator>Ahmad, Munir</creator><creator>Chen, Guo-Jie</creator><creator>Luo, Ping</creator><creator>Ren, Dong-Lou</creator><creator>Zou, Bing-Suo</creator><creator>Hu, Ju-Guang</creator><creator>Su, Zheng-Hua</creator><creator>Yan, Pei-Guang</creator><creator>Liang, Guang-Xing</creator><creator>Chen, Shuo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9033-4885</orcidid><orcidid>https://orcid.org/0000-0002-8969-8948</orcidid><orcidid>https://orcid.org/0000-0001-5228-0882</orcidid><orcidid>https://orcid.org/0000-0003-4561-4711</orcidid><orcidid>https://orcid.org/0000-0003-2137-3933</orcidid><orcidid>https://orcid.org/0000-0003-1512-376X</orcidid><orcidid>https://orcid.org/0000-0002-0657-8423</orcidid><orcidid>https://orcid.org/0000-0002-1169-4197</orcidid></search><sort><creationdate>20241218</creationdate><title>Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production</title><author>Aziz, Hafiz Sartaj ; Imran, Tahir ; Ahmad, Munir ; Chen, Guo-Jie ; Luo, Ping ; Ren, Dong-Lou ; Zou, Bing-Suo ; Hu, Ju-Guang ; Su, Zheng-Hua ; Yan, Pei-Guang ; Liang, Guang-Xing ; Chen, Shuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583-291e49b73d796535e205848bbf8b970192d36cdea5a474f058da76cedfcd58eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Imran, Tahir</creatorcontrib><creatorcontrib>Ahmad, Munir</creatorcontrib><creatorcontrib>Chen, Guo-Jie</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><creatorcontrib>Ren, Dong-Lou</creatorcontrib><creatorcontrib>Zou, Bing-Suo</creatorcontrib><creatorcontrib>Hu, Ju-Guang</creatorcontrib><creatorcontrib>Su, Zheng-Hua</creatorcontrib><creatorcontrib>Yan, Pei-Guang</creatorcontrib><creatorcontrib>Liang, Guang-Xing</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aziz, Hafiz Sartaj</au><au>Imran, Tahir</au><au>Ahmad, Munir</au><au>Chen, Guo-Jie</au><au>Luo, Ping</au><au>Ren, Dong-Lou</au><au>Zou, Bing-Suo</au><au>Hu, Ju-Guang</au><au>Su, Zheng-Hua</au><au>Yan, Pei-Guang</au><au>Liang, Guang-Xing</au><au>Chen, Shuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>393</spage><epage>409</epage><pages>393-409</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Antimony sulfoselenide (Sb (S,Se) ) is a promising sunlight absorber material for solar energy conversion in photovoltaic (PV) cells and photoelectrochemical (PEC) photoelectrodes due to its excellent photoelectric properties. However, the obtained thin-film and back contact properties significantly influence the PEC performance of photocathodes, causing severe bulk recombination, carrier transport loss, and deteriorating half-cell solar-to-hydrogen (HC-STH) efficiency. This study introduces an intriguing dual back interface engineering strategy for Sb (S,Se) photocathodes by incorporating an intermediate MoO layer and a secondary carrier transport channel of Au to strengthen charge carrier dynamics. The synergistic assembly of these dual back interface layers improves the growth kinetics and achieves the optimal orientation of Sb (S,Se) thin films by increasing substrate wettability. Moreover, by shortening the back contact barrier height and passivating defect-assisted recombinations, these dual back underlayers simultaneously enhance carrier transport and separation efficiencies. As a result, the photocurrent density of the champion Sb (S,Se) photocathode increases from 5.89 to 32.60 mA cm , and the HC-STH conversion efficiency improves significantly from 0.30% to 3.58%, representing the highest value for Sb (S,Se) -based photocathodes. This work highlights the effectiveness of dual back interface engineering in promoting the PEC performance of chalcogenide photocathodes for solar hydrogen evolution applications.</abstract><cop>England</cop><pmid>39629483</pmid><doi>10.1039/d4sc05893c</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9033-4885</orcidid><orcidid>https://orcid.org/0000-0002-8969-8948</orcidid><orcidid>https://orcid.org/0000-0001-5228-0882</orcidid><orcidid>https://orcid.org/0000-0003-4561-4711</orcidid><orcidid>https://orcid.org/0000-0003-2137-3933</orcidid><orcidid>https://orcid.org/0000-0003-1512-376X</orcidid><orcidid>https://orcid.org/0000-0002-0657-8423</orcidid><orcidid>https://orcid.org/0000-0002-1169-4197</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-12, Vol.16 (1), p.393-409
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_D4SC05893C
source PubMed Central
title Dual back interface engineering optimized charge carrier dynamics in Sb 2 (S,Se) 3 photocathodes for efficient solar hydrogen production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20back%20interface%20engineering%20optimized%20charge%20carrier%20dynamics%20in%20Sb%202%20(S,Se)%203%20photocathodes%20for%20efficient%20solar%20hydrogen%20production&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Aziz,%20Hafiz%20Sartaj&rft.date=2024-12-18&rft.volume=16&rft.issue=1&rft.spage=393&rft.epage=409&rft.pages=393-409&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc05893c&rft_dat=%3Cpubmed_cross%3E39629483%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583-291e49b73d796535e205848bbf8b970192d36cdea5a474f058da76cedfcd58eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/39629483&rfr_iscdi=true