Loading…

In vitro study of the photocytotoxicity of bathochromically-shifted hypericin derivatives

Hypericin has excellent photosensitizing properties and displays favorable tumouritropic characteristics, but at the same time exhibits minimal dark toxicity. As such, the compound is a promising photosensitizer in the context of clinical photodynamic therapy (PDT). The present study was undertaken...

Full description

Saved in:
Bibliographic Details
Published in:Photochemical & photobiological sciences 2009-06, Vol.8 (6), p.822-829
Main Authors: Roelants, Mieke, Lackner, Bernd, Waser, Mario, Falk, Heinz, Agostinis, Patrizia, Van Poppel, Hendrik, Witte, Peter A. M. de
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hypericin has excellent photosensitizing properties and displays favorable tumouritropic characteristics, but at the same time exhibits minimal dark toxicity. As such, the compound is a promising photosensitizer in the context of clinical photodynamic therapy (PDT). The present study was undertaken to investigate whether a newly-synthesized series of hypericin derivatives with a bathochromic shift shows promise for future PDT applications. Potentially these structures offer an advantage over the parent compound by being photo-activated by red light, which penetrates deeper into tumour tissue. Our results show that 3 compounds (a dibenzoxazole, a pyridazinone, and especially a dibenzthiazole derivative of hypericin), designed to exhibit a bathochromic shift in their absorption spectrum, demonstrated an efficient singlet oxygen yield and intracellular uptake, and concomitantly a potent photocytotoxic effect under white-light conditions. These results indicate that it is possible to synthesize bathochromically-shifted compounds based on hypericin chemistry which maintain their PDT potential. However, the data also show that the present derivatives are only poor photosensitizers when used under red-light conditions.
ISSN:1474-905X
1474-9092
DOI:10.1039/b820817d