Loading…

Vertical nanowire arrays as a versatile platform for protein detection and analysis

Protein microarrays are valuable tools for protein assays. Reducing spot sizes from micro- to nano-scale facilitates miniaturization of platforms and consequently decreased material consumption, but faces inherent challenges in the reduction of fluorescent signals and compatibility with complex solu...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2013-11, Vol.5 (21), p.10226
Main Authors: Rostgaard, Katrine R, Frederiksen, Rune S, Liu, Yi-Chi C, Berthing, Trine, Madsen, Morten H, Holm, Johannes, Nygård, Jesper, Martinez, Karen L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein microarrays are valuable tools for protein assays. Reducing spot sizes from micro- to nano-scale facilitates miniaturization of platforms and consequently decreased material consumption, but faces inherent challenges in the reduction of fluorescent signals and compatibility with complex solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between the NWs unnecessary. Fluorescence detection of proteins allows quantitative measurements and spatial resolution, enabling us to track individual NWs through several analytical steps, thereby allowing multiplexed detection of different proteins immobilized on different regions of the NW array. We use NW arrays for on-chip extraction, detection and functional analysis of proteins on a nano-scale platform that holds great promise for performing protein analysis on minute amounts of material. The demonstration made here on highly ordered arrays of indium arsenide (InAs) NWs is generic and can be extended to many high aspect ratio nanostructures.
ISSN:2040-3364
2040-3372
DOI:10.1039/c3nr03113f