Loading…

Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments

Due to the challenge of increasing data volume, the traditional trust model is unable to manage data with high efficiency and effectively extract useful information hidden in big data. To fully utilize big data and combine machine learning with trust evaluation, a trust evaluation model based on Lon...

Full description

Saved in:
Bibliographic Details
Published in:Chinese Journal of Electronics 2021-01, Vol.30 (1), p.92-101
Main Authors: Lin, Zhang, Yanwen, Huang, Jie, Xuan, Xiong, Fu, Qiaomin, Lin, Ruchuan, Wang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323
cites cdi_FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323
container_end_page 101
container_issue 1
container_start_page 92
container_title Chinese Journal of Electronics
container_volume 30
creator Lin, Zhang
Yanwen, Huang
Jie, Xuan
Xiong, Fu
Qiaomin, Lin
Ruchuan, Wang
description Due to the challenge of increasing data volume, the traditional trust model is unable to manage data with high efficiency and effectively extract useful information hidden in big data. To fully utilize big data and combine machine learning with trust evaluation, a trust evaluation model based on Long short‐term memory (LSTM) is presented. The powerful learning ability, expressive ability and dynamic timing of LSTM can be applied to study data while avoiding the vanishing and exploding gradient phenomena of traditional Recurrent neural networks (RNNs) to ensure that the model can learn sequences of random length and provide accurate trust evaluation. Targeting the performance instability caused by the LSTM model's random initialization of weights and thresholds, Particle swarm optimization (PSO), one of the intelligent algorithms, is introduced to find global optimal initial weights and thresholds. Experiments proved that the trust model proposed in this paper has high accuracy and contributes a new idea for trust evaluation in big data environments.
doi_str_mv 10.1049/cje.2020.12.005
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_cje_2020_12_005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CJE212016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhiMEEtPYmWteoJvtNGl7hKmwoY0hbZyjNE1RUdeiZBvi7ck07lxs_9L_-fAxdo8wRUiLmf10UwKKiaYA8oqNCDKZSFlk12yEQJSkSopbNgmhrQBUBhKRRux154_hwMuT6Y7m0A49Xw-16_ijCa7mMb5tN9z0NV9td2veDJ4vjh-OL_t47i9A2Z9aP_R71x_CHbtpTBfc5G-P2ftTuZsvktXmeTl_WCVWUKESylGZQskCZVHnlXJCIlSpVbmjQqQNSlULtA6qqopDWJsbIxshs0bUqSAxZrPLX-uHELxr9Jdv98b_aAR9NqKjEX02opF0NBIJdSG-2879_FfX85eSkACV-AUQtWNq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments</title><source>IEEE Xplore All Journals</source><source>IET Digital Library</source><creator>Lin, Zhang ; Yanwen, Huang ; Jie, Xuan ; Xiong, Fu ; Qiaomin, Lin ; Ruchuan, Wang</creator><creatorcontrib>Lin, Zhang ; Yanwen, Huang ; Jie, Xuan ; Xiong, Fu ; Qiaomin, Lin ; Ruchuan, Wang</creatorcontrib><description>Due to the challenge of increasing data volume, the traditional trust model is unable to manage data with high efficiency and effectively extract useful information hidden in big data. To fully utilize big data and combine machine learning with trust evaluation, a trust evaluation model based on Long short‐term memory (LSTM) is presented. The powerful learning ability, expressive ability and dynamic timing of LSTM can be applied to study data while avoiding the vanishing and exploding gradient phenomena of traditional Recurrent neural networks (RNNs) to ensure that the model can learn sequences of random length and provide accurate trust evaluation. Targeting the performance instability caused by the LSTM model's random initialization of weights and thresholds, Particle swarm optimization (PSO), one of the intelligent algorithms, is introduced to find global optimal initial weights and thresholds. Experiments proved that the trust model proposed in this paper has high accuracy and contributes a new idea for trust evaluation in big data environments.</description><identifier>ISSN: 1022-4653</identifier><identifier>EISSN: 2075-5597</identifier><identifier>DOI: 10.1049/cje.2020.12.005</identifier><language>eng</language><publisher>Published by the IET on behalf of the CIE</publisher><subject>Big data ; LSTM neural network ; Particle swarm optimization ; Trust model</subject><ispartof>Chinese Journal of Electronics, 2021-01, Vol.30 (1), p.92-101</ispartof><rights>2021 Chinese Institute of Electronics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323</citedby><cites>FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lin, Zhang</creatorcontrib><creatorcontrib>Yanwen, Huang</creatorcontrib><creatorcontrib>Jie, Xuan</creatorcontrib><creatorcontrib>Xiong, Fu</creatorcontrib><creatorcontrib>Qiaomin, Lin</creatorcontrib><creatorcontrib>Ruchuan, Wang</creatorcontrib><title>Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments</title><title>Chinese Journal of Electronics</title><description>Due to the challenge of increasing data volume, the traditional trust model is unable to manage data with high efficiency and effectively extract useful information hidden in big data. To fully utilize big data and combine machine learning with trust evaluation, a trust evaluation model based on Long short‐term memory (LSTM) is presented. The powerful learning ability, expressive ability and dynamic timing of LSTM can be applied to study data while avoiding the vanishing and exploding gradient phenomena of traditional Recurrent neural networks (RNNs) to ensure that the model can learn sequences of random length and provide accurate trust evaluation. Targeting the performance instability caused by the LSTM model's random initialization of weights and thresholds, Particle swarm optimization (PSO), one of the intelligent algorithms, is introduced to find global optimal initial weights and thresholds. Experiments proved that the trust model proposed in this paper has high accuracy and contributes a new idea for trust evaluation in big data environments.</description><subject>Big data</subject><subject>LSTM neural network</subject><subject>Particle swarm optimization</subject><subject>Trust model</subject><issn>1022-4653</issn><issn>2075-5597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhiMEEtPYmWteoJvtNGl7hKmwoY0hbZyjNE1RUdeiZBvi7ck07lxs_9L_-fAxdo8wRUiLmf10UwKKiaYA8oqNCDKZSFlk12yEQJSkSopbNgmhrQBUBhKRRux154_hwMuT6Y7m0A49Xw-16_ijCa7mMb5tN9z0NV9td2veDJ4vjh-OL_t47i9A2Z9aP_R71x_CHbtpTBfc5G-P2ftTuZsvktXmeTl_WCVWUKESylGZQskCZVHnlXJCIlSpVbmjQqQNSlULtA6qqopDWJsbIxshs0bUqSAxZrPLX-uHELxr9Jdv98b_aAR9NqKjEX02opF0NBIJdSG-2879_FfX85eSkACV-AUQtWNq</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Lin, Zhang</creator><creator>Yanwen, Huang</creator><creator>Jie, Xuan</creator><creator>Xiong, Fu</creator><creator>Qiaomin, Lin</creator><creator>Ruchuan, Wang</creator><general>Published by the IET on behalf of the CIE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202101</creationdate><title>Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments</title><author>Lin, Zhang ; Yanwen, Huang ; Jie, Xuan ; Xiong, Fu ; Qiaomin, Lin ; Ruchuan, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Big data</topic><topic>LSTM neural network</topic><topic>Particle swarm optimization</topic><topic>Trust model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhang</creatorcontrib><creatorcontrib>Yanwen, Huang</creatorcontrib><creatorcontrib>Jie, Xuan</creatorcontrib><creatorcontrib>Xiong, Fu</creatorcontrib><creatorcontrib>Qiaomin, Lin</creatorcontrib><creatorcontrib>Ruchuan, Wang</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese Journal of Electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zhang</au><au>Yanwen, Huang</au><au>Jie, Xuan</au><au>Xiong, Fu</au><au>Qiaomin, Lin</au><au>Ruchuan, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments</atitle><jtitle>Chinese Journal of Electronics</jtitle><date>2021-01</date><risdate>2021</risdate><volume>30</volume><issue>1</issue><spage>92</spage><epage>101</epage><pages>92-101</pages><issn>1022-4653</issn><eissn>2075-5597</eissn><abstract>Due to the challenge of increasing data volume, the traditional trust model is unable to manage data with high efficiency and effectively extract useful information hidden in big data. To fully utilize big data and combine machine learning with trust evaluation, a trust evaluation model based on Long short‐term memory (LSTM) is presented. The powerful learning ability, expressive ability and dynamic timing of LSTM can be applied to study data while avoiding the vanishing and exploding gradient phenomena of traditional Recurrent neural networks (RNNs) to ensure that the model can learn sequences of random length and provide accurate trust evaluation. Targeting the performance instability caused by the LSTM model's random initialization of weights and thresholds, Particle swarm optimization (PSO), one of the intelligent algorithms, is introduced to find global optimal initial weights and thresholds. Experiments proved that the trust model proposed in this paper has high accuracy and contributes a new idea for trust evaluation in big data environments.</abstract><pub>Published by the IET on behalf of the CIE</pub><doi>10.1049/cje.2020.12.005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-4653
ispartof Chinese Journal of Electronics, 2021-01, Vol.30 (1), p.92-101
issn 1022-4653
2075-5597
language eng
recordid cdi_crossref_primary_10_1049_cje_2020_12_005
source IEEE Xplore All Journals; IET Digital Library
subjects Big data
LSTM neural network
Particle swarm optimization
Trust model
title Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trust%20Evaluation%20Model%20Based%20on%20PSO%20and%20LSTM%20for%20Huge%20Information%20Environments&rft.jtitle=Chinese%20Journal%20of%20Electronics&rft.au=Lin,%20Zhang&rft.date=2021-01&rft.volume=30&rft.issue=1&rft.spage=92&rft.epage=101&rft.pages=92-101&rft.issn=1022-4653&rft.eissn=2075-5597&rft_id=info:doi/10.1049/cje.2020.12.005&rft_dat=%3Cwiley_cross%3ECJE212016%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true