Loading…
Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments
Due to the challenge of increasing data volume, the traditional trust model is unable to manage data with high efficiency and effectively extract useful information hidden in big data. To fully utilize big data and combine machine learning with trust evaluation, a trust evaluation model based on Lon...
Saved in:
Published in: | Chinese Journal of Electronics 2021-01, Vol.30 (1), p.92-101 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323 |
---|---|
cites | cdi_FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323 |
container_end_page | 101 |
container_issue | 1 |
container_start_page | 92 |
container_title | Chinese Journal of Electronics |
container_volume | 30 |
creator | Lin, Zhang Yanwen, Huang Jie, Xuan Xiong, Fu Qiaomin, Lin Ruchuan, Wang |
description | Due to the challenge of increasing data volume, the traditional trust model is unable to manage data with high efficiency and effectively extract useful information hidden in big data. To fully utilize big data and combine machine learning with trust evaluation, a trust evaluation model based on Long short‐term memory (LSTM) is presented. The powerful learning ability, expressive ability and dynamic timing of LSTM can be applied to study data while avoiding the vanishing and exploding gradient phenomena of traditional Recurrent neural networks (RNNs) to ensure that the model can learn sequences of random length and provide accurate trust evaluation. Targeting the performance instability caused by the LSTM model's random initialization of weights and thresholds, Particle swarm optimization (PSO), one of the intelligent algorithms, is introduced to find global optimal initial weights and thresholds. Experiments proved that the trust model proposed in this paper has high accuracy and contributes a new idea for trust evaluation in big data environments. |
doi_str_mv | 10.1049/cje.2020.12.005 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_cje_2020_12_005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CJE212016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhiMEEtPYmWteoJvtNGl7hKmwoY0hbZyjNE1RUdeiZBvi7ck07lxs_9L_-fAxdo8wRUiLmf10UwKKiaYA8oqNCDKZSFlk12yEQJSkSopbNgmhrQBUBhKRRux154_hwMuT6Y7m0A49Xw-16_ijCa7mMb5tN9z0NV9td2veDJ4vjh-OL_t47i9A2Z9aP_R71x_CHbtpTBfc5G-P2ftTuZsvktXmeTl_WCVWUKESylGZQskCZVHnlXJCIlSpVbmjQqQNSlULtA6qqopDWJsbIxshs0bUqSAxZrPLX-uHELxr9Jdv98b_aAR9NqKjEX02opF0NBIJdSG-2879_FfX85eSkACV-AUQtWNq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments</title><source>IEEE Xplore All Journals</source><source>IET Digital Library</source><creator>Lin, Zhang ; Yanwen, Huang ; Jie, Xuan ; Xiong, Fu ; Qiaomin, Lin ; Ruchuan, Wang</creator><creatorcontrib>Lin, Zhang ; Yanwen, Huang ; Jie, Xuan ; Xiong, Fu ; Qiaomin, Lin ; Ruchuan, Wang</creatorcontrib><description>Due to the challenge of increasing data volume, the traditional trust model is unable to manage data with high efficiency and effectively extract useful information hidden in big data. To fully utilize big data and combine machine learning with trust evaluation, a trust evaluation model based on Long short‐term memory (LSTM) is presented. The powerful learning ability, expressive ability and dynamic timing of LSTM can be applied to study data while avoiding the vanishing and exploding gradient phenomena of traditional Recurrent neural networks (RNNs) to ensure that the model can learn sequences of random length and provide accurate trust evaluation. Targeting the performance instability caused by the LSTM model's random initialization of weights and thresholds, Particle swarm optimization (PSO), one of the intelligent algorithms, is introduced to find global optimal initial weights and thresholds. Experiments proved that the trust model proposed in this paper has high accuracy and contributes a new idea for trust evaluation in big data environments.</description><identifier>ISSN: 1022-4653</identifier><identifier>EISSN: 2075-5597</identifier><identifier>DOI: 10.1049/cje.2020.12.005</identifier><language>eng</language><publisher>Published by the IET on behalf of the CIE</publisher><subject>Big data ; LSTM neural network ; Particle swarm optimization ; Trust model</subject><ispartof>Chinese Journal of Electronics, 2021-01, Vol.30 (1), p.92-101</ispartof><rights>2021 Chinese Institute of Electronics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323</citedby><cites>FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lin, Zhang</creatorcontrib><creatorcontrib>Yanwen, Huang</creatorcontrib><creatorcontrib>Jie, Xuan</creatorcontrib><creatorcontrib>Xiong, Fu</creatorcontrib><creatorcontrib>Qiaomin, Lin</creatorcontrib><creatorcontrib>Ruchuan, Wang</creatorcontrib><title>Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments</title><title>Chinese Journal of Electronics</title><description>Due to the challenge of increasing data volume, the traditional trust model is unable to manage data with high efficiency and effectively extract useful information hidden in big data. To fully utilize big data and combine machine learning with trust evaluation, a trust evaluation model based on Long short‐term memory (LSTM) is presented. The powerful learning ability, expressive ability and dynamic timing of LSTM can be applied to study data while avoiding the vanishing and exploding gradient phenomena of traditional Recurrent neural networks (RNNs) to ensure that the model can learn sequences of random length and provide accurate trust evaluation. Targeting the performance instability caused by the LSTM model's random initialization of weights and thresholds, Particle swarm optimization (PSO), one of the intelligent algorithms, is introduced to find global optimal initial weights and thresholds. Experiments proved that the trust model proposed in this paper has high accuracy and contributes a new idea for trust evaluation in big data environments.</description><subject>Big data</subject><subject>LSTM neural network</subject><subject>Particle swarm optimization</subject><subject>Trust model</subject><issn>1022-4653</issn><issn>2075-5597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhiMEEtPYmWteoJvtNGl7hKmwoY0hbZyjNE1RUdeiZBvi7ck07lxs_9L_-fAxdo8wRUiLmf10UwKKiaYA8oqNCDKZSFlk12yEQJSkSopbNgmhrQBUBhKRRux154_hwMuT6Y7m0A49Xw-16_ijCa7mMb5tN9z0NV9td2veDJ4vjh-OL_t47i9A2Z9aP_R71x_CHbtpTBfc5G-P2ftTuZsvktXmeTl_WCVWUKESylGZQskCZVHnlXJCIlSpVbmjQqQNSlULtA6qqopDWJsbIxshs0bUqSAxZrPLX-uHELxr9Jdv98b_aAR9NqKjEX02opF0NBIJdSG-2879_FfX85eSkACV-AUQtWNq</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Lin, Zhang</creator><creator>Yanwen, Huang</creator><creator>Jie, Xuan</creator><creator>Xiong, Fu</creator><creator>Qiaomin, Lin</creator><creator>Ruchuan, Wang</creator><general>Published by the IET on behalf of the CIE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202101</creationdate><title>Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments</title><author>Lin, Zhang ; Yanwen, Huang ; Jie, Xuan ; Xiong, Fu ; Qiaomin, Lin ; Ruchuan, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Big data</topic><topic>LSTM neural network</topic><topic>Particle swarm optimization</topic><topic>Trust model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhang</creatorcontrib><creatorcontrib>Yanwen, Huang</creatorcontrib><creatorcontrib>Jie, Xuan</creatorcontrib><creatorcontrib>Xiong, Fu</creatorcontrib><creatorcontrib>Qiaomin, Lin</creatorcontrib><creatorcontrib>Ruchuan, Wang</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese Journal of Electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zhang</au><au>Yanwen, Huang</au><au>Jie, Xuan</au><au>Xiong, Fu</au><au>Qiaomin, Lin</au><au>Ruchuan, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments</atitle><jtitle>Chinese Journal of Electronics</jtitle><date>2021-01</date><risdate>2021</risdate><volume>30</volume><issue>1</issue><spage>92</spage><epage>101</epage><pages>92-101</pages><issn>1022-4653</issn><eissn>2075-5597</eissn><abstract>Due to the challenge of increasing data volume, the traditional trust model is unable to manage data with high efficiency and effectively extract useful information hidden in big data. To fully utilize big data and combine machine learning with trust evaluation, a trust evaluation model based on Long short‐term memory (LSTM) is presented. The powerful learning ability, expressive ability and dynamic timing of LSTM can be applied to study data while avoiding the vanishing and exploding gradient phenomena of traditional Recurrent neural networks (RNNs) to ensure that the model can learn sequences of random length and provide accurate trust evaluation. Targeting the performance instability caused by the LSTM model's random initialization of weights and thresholds, Particle swarm optimization (PSO), one of the intelligent algorithms, is introduced to find global optimal initial weights and thresholds. Experiments proved that the trust model proposed in this paper has high accuracy and contributes a new idea for trust evaluation in big data environments.</abstract><pub>Published by the IET on behalf of the CIE</pub><doi>10.1049/cje.2020.12.005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-4653 |
ispartof | Chinese Journal of Electronics, 2021-01, Vol.30 (1), p.92-101 |
issn | 1022-4653 2075-5597 |
language | eng |
recordid | cdi_crossref_primary_10_1049_cje_2020_12_005 |
source | IEEE Xplore All Journals; IET Digital Library |
subjects | Big data LSTM neural network Particle swarm optimization Trust model |
title | Trust Evaluation Model Based on PSO and LSTM for Huge Information Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trust%20Evaluation%20Model%20Based%20on%20PSO%20and%20LSTM%20for%20Huge%20Information%20Environments&rft.jtitle=Chinese%20Journal%20of%20Electronics&rft.au=Lin,%20Zhang&rft.date=2021-01&rft.volume=30&rft.issue=1&rft.spage=92&rft.epage=101&rft.pages=92-101&rft.issn=1022-4653&rft.eissn=2075-5597&rft_id=info:doi/10.1049/cje.2020.12.005&rft_dat=%3Cwiley_cross%3ECJE212016%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3296-2816a9659159d8b6e3510b4c68e2934f156d31ce0bbbe0b3cc8aa5f357f3d4323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |