Loading…
Characterization and Properties of Bent‐Negabent Functions
A further characterization of the bent‐negabent functions is presented. Based on the concept of complete mapping polynomial, we provide a necessary and sufficient condition for a class of quadratic Boolean functions to be bent‐negabent. A new characterization of negabent functions can be described b...
Saved in:
Published in: | Chinese Journal of Electronics 2022-07, Vol.31 (4), p.786-792 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3 |
container_end_page | 792 |
container_issue | 4 |
container_start_page | 786 |
container_title | Chinese Journal of Electronics |
container_volume | 31 |
creator | JIANG, Niu ZHAO, Min YANG, Zhiyao ZHUO, Zepeng CHEN, Guolong |
description | A further characterization of the bent‐negabent functions is presented. Based on the concept of complete mapping polynomial, we provide a necessary and sufficient condition for a class of quadratic Boolean functions to be bent‐negabent. A new characterization of negabent functions can be described by using the parity of Hamming weight. We further generalize the classical convolution theorem and give the nega‐Hadamard transform of the composition of a Boolean function and a vectorial Boolean function. The nega‐Hadamard transform of a generalized indirect sum is calculated by this composition method. |
doi_str_mv | 10.1049/cje.2021.00.417 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_cje_2021_00_417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CJE212231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3</originalsourceid><addsrcrecordid>eNqFj7FOwzAURS0EElXpzJofSPqe7cSJxAJRS0EVMMBsOS8vEFSSyg5CZeIT-Ea-hFRlZ7p3uOdKR4hzhARBF3N65USCxAQg0WiOxESCSeM0LcyxmCBIGessVadiFkJbAWQGUkQ5ERfli_OOBvbtpxvavotcV0cPvt-yH1oOUd9EV9wNP1_fd_zsqrFGy_eO9tNwJk4atwk8-8upeFouHstVvL6_vikv1zEpWWCckWGqM1cZ19RUK8Aqh5y0zgiJjcGGc8kKVOpq47RSrtE5SaBK5gxAairmh1_yfQieG7v17ZvzO4tg9_529Ld7fwtgR_-RyA7ER7vh3X9zW94uJEqpUP0Cz85gGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization and Properties of Bent‐Negabent Functions</title><source>IEEE Xplore All Journals</source><source>IET Digital Library</source><creator>JIANG, Niu ; ZHAO, Min ; YANG, Zhiyao ; ZHUO, Zepeng ; CHEN, Guolong</creator><creatorcontrib>JIANG, Niu ; ZHAO, Min ; YANG, Zhiyao ; ZHUO, Zepeng ; CHEN, Guolong</creatorcontrib><description>A further characterization of the bent‐negabent functions is presented. Based on the concept of complete mapping polynomial, we provide a necessary and sufficient condition for a class of quadratic Boolean functions to be bent‐negabent. A new characterization of negabent functions can be described by using the parity of Hamming weight. We further generalize the classical convolution theorem and give the nega‐Hadamard transform of the composition of a Boolean function and a vectorial Boolean function. The nega‐Hadamard transform of a generalized indirect sum is calculated by this composition method.</description><identifier>ISSN: 1022-4653</identifier><identifier>EISSN: 2075-5597</identifier><identifier>DOI: 10.1049/cje.2021.00.417</identifier><language>eng</language><publisher>Beijing, China: Editorial Office of Chinese Journal of Electronics</publisher><subject>Bent‐negabent function ; Boolean function ; Nega‐Hadamard transform ; Walsh‐Hadamard transform</subject><ispartof>Chinese Journal of Electronics, 2022-07, Vol.31 (4), p.786-792</ispartof><rights>2022 Chinese Institute of Electronics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3</citedby><cites>FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>JIANG, Niu</creatorcontrib><creatorcontrib>ZHAO, Min</creatorcontrib><creatorcontrib>YANG, Zhiyao</creatorcontrib><creatorcontrib>ZHUO, Zepeng</creatorcontrib><creatorcontrib>CHEN, Guolong</creatorcontrib><title>Characterization and Properties of Bent‐Negabent Functions</title><title>Chinese Journal of Electronics</title><description>A further characterization of the bent‐negabent functions is presented. Based on the concept of complete mapping polynomial, we provide a necessary and sufficient condition for a class of quadratic Boolean functions to be bent‐negabent. A new characterization of negabent functions can be described by using the parity of Hamming weight. We further generalize the classical convolution theorem and give the nega‐Hadamard transform of the composition of a Boolean function and a vectorial Boolean function. The nega‐Hadamard transform of a generalized indirect sum is calculated by this composition method.</description><subject>Bent‐negabent function</subject><subject>Boolean function</subject><subject>Nega‐Hadamard transform</subject><subject>Walsh‐Hadamard transform</subject><issn>1022-4653</issn><issn>2075-5597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFj7FOwzAURS0EElXpzJofSPqe7cSJxAJRS0EVMMBsOS8vEFSSyg5CZeIT-Ea-hFRlZ7p3uOdKR4hzhARBF3N65USCxAQg0WiOxESCSeM0LcyxmCBIGessVadiFkJbAWQGUkQ5ERfli_OOBvbtpxvavotcV0cPvt-yH1oOUd9EV9wNP1_fd_zsqrFGy_eO9tNwJk4atwk8-8upeFouHstVvL6_vikv1zEpWWCckWGqM1cZ19RUK8Aqh5y0zgiJjcGGc8kKVOpq47RSrtE5SaBK5gxAairmh1_yfQieG7v17ZvzO4tg9_529Ld7fwtgR_-RyA7ER7vh3X9zW94uJEqpUP0Cz85gGg</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>JIANG, Niu</creator><creator>ZHAO, Min</creator><creator>YANG, Zhiyao</creator><creator>ZHUO, Zepeng</creator><creator>CHEN, Guolong</creator><general>Editorial Office of Chinese Journal of Electronics</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202207</creationdate><title>Characterization and Properties of Bent‐Negabent Functions</title><author>JIANG, Niu ; ZHAO, Min ; YANG, Zhiyao ; ZHUO, Zepeng ; CHEN, Guolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bent‐negabent function</topic><topic>Boolean function</topic><topic>Nega‐Hadamard transform</topic><topic>Walsh‐Hadamard transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JIANG, Niu</creatorcontrib><creatorcontrib>ZHAO, Min</creatorcontrib><creatorcontrib>YANG, Zhiyao</creatorcontrib><creatorcontrib>ZHUO, Zepeng</creatorcontrib><creatorcontrib>CHEN, Guolong</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><jtitle>Chinese Journal of Electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JIANG, Niu</au><au>ZHAO, Min</au><au>YANG, Zhiyao</au><au>ZHUO, Zepeng</au><au>CHEN, Guolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and Properties of Bent‐Negabent Functions</atitle><jtitle>Chinese Journal of Electronics</jtitle><date>2022-07</date><risdate>2022</risdate><volume>31</volume><issue>4</issue><spage>786</spage><epage>792</epage><pages>786-792</pages><issn>1022-4653</issn><eissn>2075-5597</eissn><abstract>A further characterization of the bent‐negabent functions is presented. Based on the concept of complete mapping polynomial, we provide a necessary and sufficient condition for a class of quadratic Boolean functions to be bent‐negabent. A new characterization of negabent functions can be described by using the parity of Hamming weight. We further generalize the classical convolution theorem and give the nega‐Hadamard transform of the composition of a Boolean function and a vectorial Boolean function. The nega‐Hadamard transform of a generalized indirect sum is calculated by this composition method.</abstract><cop>Beijing, China</cop><pub>Editorial Office of Chinese Journal of Electronics</pub><doi>10.1049/cje.2021.00.417</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-4653 |
ispartof | Chinese Journal of Electronics, 2022-07, Vol.31 (4), p.786-792 |
issn | 1022-4653 2075-5597 |
language | eng |
recordid | cdi_crossref_primary_10_1049_cje_2021_00_417 |
source | IEEE Xplore All Journals; IET Digital Library |
subjects | Bent‐negabent function Boolean function Nega‐Hadamard transform Walsh‐Hadamard transform |
title | Characterization and Properties of Bent‐Negabent Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20Properties%20of%20Bent%E2%80%90Negabent%20Functions&rft.jtitle=Chinese%20Journal%20of%20Electronics&rft.au=JIANG,%20Niu&rft.date=2022-07&rft.volume=31&rft.issue=4&rft.spage=786&rft.epage=792&rft.pages=786-792&rft.issn=1022-4653&rft.eissn=2075-5597&rft_id=info:doi/10.1049/cje.2021.00.417&rft_dat=%3Cwiley_cross%3ECJE212231%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |