Loading…

Characterization and Properties of Bent‐Negabent Functions

A further characterization of the bent‐negabent functions is presented. Based on the concept of complete mapping polynomial, we provide a necessary and sufficient condition for a class of quadratic Boolean functions to be bent‐negabent. A new characterization of negabent functions can be described b...

Full description

Saved in:
Bibliographic Details
Published in:Chinese Journal of Electronics 2022-07, Vol.31 (4), p.786-792
Main Authors: JIANG, Niu, ZHAO, Min, YANG, Zhiyao, ZHUO, Zepeng, CHEN, Guolong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3
cites cdi_FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3
container_end_page 792
container_issue 4
container_start_page 786
container_title Chinese Journal of Electronics
container_volume 31
creator JIANG, Niu
ZHAO, Min
YANG, Zhiyao
ZHUO, Zepeng
CHEN, Guolong
description A further characterization of the bent‐negabent functions is presented. Based on the concept of complete mapping polynomial, we provide a necessary and sufficient condition for a class of quadratic Boolean functions to be bent‐negabent. A new characterization of negabent functions can be described by using the parity of Hamming weight. We further generalize the classical convolution theorem and give the nega‐Hadamard transform of the composition of a Boolean function and a vectorial Boolean function. The nega‐Hadamard transform of a generalized indirect sum is calculated by this composition method.
doi_str_mv 10.1049/cje.2021.00.417
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_cje_2021_00_417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CJE212231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3</originalsourceid><addsrcrecordid>eNqFj7FOwzAURS0EElXpzJofSPqe7cSJxAJRS0EVMMBsOS8vEFSSyg5CZeIT-Ea-hFRlZ7p3uOdKR4hzhARBF3N65USCxAQg0WiOxESCSeM0LcyxmCBIGessVadiFkJbAWQGUkQ5ERfli_OOBvbtpxvavotcV0cPvt-yH1oOUd9EV9wNP1_fd_zsqrFGy_eO9tNwJk4atwk8-8upeFouHstVvL6_vikv1zEpWWCckWGqM1cZ19RUK8Aqh5y0zgiJjcGGc8kKVOpq47RSrtE5SaBK5gxAairmh1_yfQieG7v17ZvzO4tg9_529Ld7fwtgR_-RyA7ER7vh3X9zW94uJEqpUP0Cz85gGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization and Properties of Bent‐Negabent Functions</title><source>IEEE Xplore All Journals</source><source>IET Digital Library</source><creator>JIANG, Niu ; ZHAO, Min ; YANG, Zhiyao ; ZHUO, Zepeng ; CHEN, Guolong</creator><creatorcontrib>JIANG, Niu ; ZHAO, Min ; YANG, Zhiyao ; ZHUO, Zepeng ; CHEN, Guolong</creatorcontrib><description>A further characterization of the bent‐negabent functions is presented. Based on the concept of complete mapping polynomial, we provide a necessary and sufficient condition for a class of quadratic Boolean functions to be bent‐negabent. A new characterization of negabent functions can be described by using the parity of Hamming weight. We further generalize the classical convolution theorem and give the nega‐Hadamard transform of the composition of a Boolean function and a vectorial Boolean function. The nega‐Hadamard transform of a generalized indirect sum is calculated by this composition method.</description><identifier>ISSN: 1022-4653</identifier><identifier>EISSN: 2075-5597</identifier><identifier>DOI: 10.1049/cje.2021.00.417</identifier><language>eng</language><publisher>Beijing, China: Editorial Office of Chinese Journal of Electronics</publisher><subject>Bent‐negabent function ; Boolean function ; Nega‐Hadamard transform ; Walsh‐Hadamard transform</subject><ispartof>Chinese Journal of Electronics, 2022-07, Vol.31 (4), p.786-792</ispartof><rights>2022 Chinese Institute of Electronics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3</citedby><cites>FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>JIANG, Niu</creatorcontrib><creatorcontrib>ZHAO, Min</creatorcontrib><creatorcontrib>YANG, Zhiyao</creatorcontrib><creatorcontrib>ZHUO, Zepeng</creatorcontrib><creatorcontrib>CHEN, Guolong</creatorcontrib><title>Characterization and Properties of Bent‐Negabent Functions</title><title>Chinese Journal of Electronics</title><description>A further characterization of the bent‐negabent functions is presented. Based on the concept of complete mapping polynomial, we provide a necessary and sufficient condition for a class of quadratic Boolean functions to be bent‐negabent. A new characterization of negabent functions can be described by using the parity of Hamming weight. We further generalize the classical convolution theorem and give the nega‐Hadamard transform of the composition of a Boolean function and a vectorial Boolean function. The nega‐Hadamard transform of a generalized indirect sum is calculated by this composition method.</description><subject>Bent‐negabent function</subject><subject>Boolean function</subject><subject>Nega‐Hadamard transform</subject><subject>Walsh‐Hadamard transform</subject><issn>1022-4653</issn><issn>2075-5597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFj7FOwzAURS0EElXpzJofSPqe7cSJxAJRS0EVMMBsOS8vEFSSyg5CZeIT-Ea-hFRlZ7p3uOdKR4hzhARBF3N65USCxAQg0WiOxESCSeM0LcyxmCBIGessVadiFkJbAWQGUkQ5ERfli_OOBvbtpxvavotcV0cPvt-yH1oOUd9EV9wNP1_fd_zsqrFGy_eO9tNwJk4atwk8-8upeFouHstVvL6_vikv1zEpWWCckWGqM1cZ19RUK8Aqh5y0zgiJjcGGc8kKVOpq47RSrtE5SaBK5gxAairmh1_yfQieG7v17ZvzO4tg9_529Ld7fwtgR_-RyA7ER7vh3X9zW94uJEqpUP0Cz85gGg</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>JIANG, Niu</creator><creator>ZHAO, Min</creator><creator>YANG, Zhiyao</creator><creator>ZHUO, Zepeng</creator><creator>CHEN, Guolong</creator><general>Editorial Office of Chinese Journal of Electronics</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202207</creationdate><title>Characterization and Properties of Bent‐Negabent Functions</title><author>JIANG, Niu ; ZHAO, Min ; YANG, Zhiyao ; ZHUO, Zepeng ; CHEN, Guolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bent‐negabent function</topic><topic>Boolean function</topic><topic>Nega‐Hadamard transform</topic><topic>Walsh‐Hadamard transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JIANG, Niu</creatorcontrib><creatorcontrib>ZHAO, Min</creatorcontrib><creatorcontrib>YANG, Zhiyao</creatorcontrib><creatorcontrib>ZHUO, Zepeng</creatorcontrib><creatorcontrib>CHEN, Guolong</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><jtitle>Chinese Journal of Electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JIANG, Niu</au><au>ZHAO, Min</au><au>YANG, Zhiyao</au><au>ZHUO, Zepeng</au><au>CHEN, Guolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and Properties of Bent‐Negabent Functions</atitle><jtitle>Chinese Journal of Electronics</jtitle><date>2022-07</date><risdate>2022</risdate><volume>31</volume><issue>4</issue><spage>786</spage><epage>792</epage><pages>786-792</pages><issn>1022-4653</issn><eissn>2075-5597</eissn><abstract>A further characterization of the bent‐negabent functions is presented. Based on the concept of complete mapping polynomial, we provide a necessary and sufficient condition for a class of quadratic Boolean functions to be bent‐negabent. A new characterization of negabent functions can be described by using the parity of Hamming weight. We further generalize the classical convolution theorem and give the nega‐Hadamard transform of the composition of a Boolean function and a vectorial Boolean function. The nega‐Hadamard transform of a generalized indirect sum is calculated by this composition method.</abstract><cop>Beijing, China</cop><pub>Editorial Office of Chinese Journal of Electronics</pub><doi>10.1049/cje.2021.00.417</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-4653
ispartof Chinese Journal of Electronics, 2022-07, Vol.31 (4), p.786-792
issn 1022-4653
2075-5597
language eng
recordid cdi_crossref_primary_10_1049_cje_2021_00_417
source IEEE Xplore All Journals; IET Digital Library
subjects Bent‐negabent function
Boolean function
Nega‐Hadamard transform
Walsh‐Hadamard transform
title Characterization and Properties of Bent‐Negabent Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20Properties%20of%20Bent%E2%80%90Negabent%20Functions&rft.jtitle=Chinese%20Journal%20of%20Electronics&rft.au=JIANG,%20Niu&rft.date=2022-07&rft.volume=31&rft.issue=4&rft.spage=786&rft.epage=792&rft.pages=786-792&rft.issn=1022-4653&rft.eissn=2075-5597&rft_id=info:doi/10.1049/cje.2021.00.417&rft_dat=%3Cwiley_cross%3ECJE212231%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3291-6c7ecd6ab7afdcd301b808c446c1ce771fe82e3035ad7a433af48c20cb28e00c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true