Loading…

New Secondary Constructions of Generalized Bent Functions

Three new secondary constructions of generalized bent functions are presented. We provide a secondary construction of generalized bent functions from indirect sum methods proposed by Carlet et al. A new secondary construction of generalized bent functions from four initial functions is also investig...

Full description

Saved in:
Bibliographic Details
Published in:Chinese Journal of Electronics 2021-11, Vol.30 (6), p.1022-1029
Main Authors: Zhiyao, YANG, Pinhui, KE, Zhixiong, CHEN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2428-61bef49b5fe7e46a4b6afadc7c3e8c40540e3abc5b4d768a65e0ad2799c73fd3
container_end_page 1029
container_issue 6
container_start_page 1022
container_title Chinese Journal of Electronics
container_volume 30
creator Zhiyao, YANG
Pinhui, KE
Zhixiong, CHEN
description Three new secondary constructions of generalized bent functions are presented. We provide a secondary construction of generalized bent functions from indirect sum methods proposed by Carlet et al. A new secondary construction of generalized bent functions from four initial functions is also investigated. We demonstrate that many known constructions can be derived from our proposed construction as special cases by choosing proper initial functions and parameters. By modifying the new construction, a novel secondary construction of generalized bent functions from two initial generalized bent functions is obtained. For the binary case, the dual functions of the bent functions by our method are presented, which share the same formula as the indirect sum.
doi_str_mv 10.1049/cje.2021.08.003
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_cje_2021_08_003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CJE212128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2428-61bef49b5fe7e46a4b6afadc7c3e8c40540e3abc5b4d768a65e0ad2799c73fd3</originalsourceid><addsrcrecordid>eNqFj09Lw0AQxRdRMNSeve4XSDr7PzlqaGul6MHel83uLERiIklKqZ_eLfUuc3gD771hfoQ8MigYyGrlP7HgwFkBZQEgbkjGwahcqcrckowB57nUStyT5TS1DYA2oBjjGane8EQ_0A99cOOZ1kM_zePRz21a6BDpFnscXdf-YKDP2M90c-yv7gO5i66bcPmnC3LYrA_1S75_3-7qp33uueRlrlmDUVaNimhQaicb7aIL3niBpZegJKBwjVeNDEaXTisEF7ipKm9EDGJBVtezfhymacRov8f2K_1qGdgLu03s9sJuobSJPTX0tXFqOzz_F7f165qzNKX4BVRIXhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Secondary Constructions of Generalized Bent Functions</title><source>IEEE Xplore All Journals</source><source>IET Digital Library</source><creator>Zhiyao, YANG ; Pinhui, KE ; Zhixiong, CHEN</creator><creatorcontrib>Zhiyao, YANG ; Pinhui, KE ; Zhixiong, CHEN</creatorcontrib><description>Three new secondary constructions of generalized bent functions are presented. We provide a secondary construction of generalized bent functions from indirect sum methods proposed by Carlet et al. A new secondary construction of generalized bent functions from four initial functions is also investigated. We demonstrate that many known constructions can be derived from our proposed construction as special cases by choosing proper initial functions and parameters. By modifying the new construction, a novel secondary construction of generalized bent functions from two initial generalized bent functions is obtained. For the binary case, the dual functions of the bent functions by our method are presented, which share the same formula as the indirect sum.</description><identifier>ISSN: 1022-4653</identifier><identifier>EISSN: 2075-5597</identifier><identifier>DOI: 10.1049/cje.2021.08.003</identifier><language>eng</language><publisher>Published by the IET on behalf of the CIE</publisher><subject>Bent function ; Generalized bent function ; Indirect sum ; Walsh‐Hadamard transform</subject><ispartof>Chinese Journal of Electronics, 2021-11, Vol.30 (6), p.1022-1029</ispartof><rights>2021 Chinese Institute of Electronics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2428-61bef49b5fe7e46a4b6afadc7c3e8c40540e3abc5b4d768a65e0ad2799c73fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhiyao, YANG</creatorcontrib><creatorcontrib>Pinhui, KE</creatorcontrib><creatorcontrib>Zhixiong, CHEN</creatorcontrib><title>New Secondary Constructions of Generalized Bent Functions</title><title>Chinese Journal of Electronics</title><description>Three new secondary constructions of generalized bent functions are presented. We provide a secondary construction of generalized bent functions from indirect sum methods proposed by Carlet et al. A new secondary construction of generalized bent functions from four initial functions is also investigated. We demonstrate that many known constructions can be derived from our proposed construction as special cases by choosing proper initial functions and parameters. By modifying the new construction, a novel secondary construction of generalized bent functions from two initial generalized bent functions is obtained. For the binary case, the dual functions of the bent functions by our method are presented, which share the same formula as the indirect sum.</description><subject>Bent function</subject><subject>Generalized bent function</subject><subject>Indirect sum</subject><subject>Walsh‐Hadamard transform</subject><issn>1022-4653</issn><issn>2075-5597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFj09Lw0AQxRdRMNSeve4XSDr7PzlqaGul6MHel83uLERiIklKqZ_eLfUuc3gD771hfoQ8MigYyGrlP7HgwFkBZQEgbkjGwahcqcrckowB57nUStyT5TS1DYA2oBjjGane8EQ_0A99cOOZ1kM_zePRz21a6BDpFnscXdf-YKDP2M90c-yv7gO5i66bcPmnC3LYrA_1S75_3-7qp33uueRlrlmDUVaNimhQaicb7aIL3niBpZegJKBwjVeNDEaXTisEF7ipKm9EDGJBVtezfhymacRov8f2K_1qGdgLu03s9sJuobSJPTX0tXFqOzz_F7f165qzNKX4BVRIXhA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhiyao, YANG</creator><creator>Pinhui, KE</creator><creator>Zhixiong, CHEN</creator><general>Published by the IET on behalf of the CIE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202111</creationdate><title>New Secondary Constructions of Generalized Bent Functions</title><author>Zhiyao, YANG ; Pinhui, KE ; Zhixiong, CHEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2428-61bef49b5fe7e46a4b6afadc7c3e8c40540e3abc5b4d768a65e0ad2799c73fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bent function</topic><topic>Generalized bent function</topic><topic>Indirect sum</topic><topic>Walsh‐Hadamard transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhiyao, YANG</creatorcontrib><creatorcontrib>Pinhui, KE</creatorcontrib><creatorcontrib>Zhixiong, CHEN</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese Journal of Electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhiyao, YANG</au><au>Pinhui, KE</au><au>Zhixiong, CHEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Secondary Constructions of Generalized Bent Functions</atitle><jtitle>Chinese Journal of Electronics</jtitle><date>2021-11</date><risdate>2021</risdate><volume>30</volume><issue>6</issue><spage>1022</spage><epage>1029</epage><pages>1022-1029</pages><issn>1022-4653</issn><eissn>2075-5597</eissn><abstract>Three new secondary constructions of generalized bent functions are presented. We provide a secondary construction of generalized bent functions from indirect sum methods proposed by Carlet et al. A new secondary construction of generalized bent functions from four initial functions is also investigated. We demonstrate that many known constructions can be derived from our proposed construction as special cases by choosing proper initial functions and parameters. By modifying the new construction, a novel secondary construction of generalized bent functions from two initial generalized bent functions is obtained. For the binary case, the dual functions of the bent functions by our method are presented, which share the same formula as the indirect sum.</abstract><pub>Published by the IET on behalf of the CIE</pub><doi>10.1049/cje.2021.08.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-4653
ispartof Chinese Journal of Electronics, 2021-11, Vol.30 (6), p.1022-1029
issn 1022-4653
2075-5597
language eng
recordid cdi_crossref_primary_10_1049_cje_2021_08_003
source IEEE Xplore All Journals; IET Digital Library
subjects Bent function
Generalized bent function
Indirect sum
Walsh‐Hadamard transform
title New Secondary Constructions of Generalized Bent Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Secondary%20Constructions%20of%20Generalized%20Bent%20Functions&rft.jtitle=Chinese%20Journal%20of%20Electronics&rft.au=Zhiyao,%20YANG&rft.date=2021-11&rft.volume=30&rft.issue=6&rft.spage=1022&rft.epage=1029&rft.pages=1022-1029&rft.issn=1022-4653&rft.eissn=2075-5597&rft_id=info:doi/10.1049/cje.2021.08.003&rft_dat=%3Cwiley_cross%3ECJE212128%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2428-61bef49b5fe7e46a4b6afadc7c3e8c40540e3abc5b4d768a65e0ad2799c73fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true