Loading…
New Secondary Constructions of Generalized Bent Functions
Three new secondary constructions of generalized bent functions are presented. We provide a secondary construction of generalized bent functions from indirect sum methods proposed by Carlet et al. A new secondary construction of generalized bent functions from four initial functions is also investig...
Saved in:
Published in: | Chinese Journal of Electronics 2021-11, Vol.30 (6), p.1022-1029 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2428-61bef49b5fe7e46a4b6afadc7c3e8c40540e3abc5b4d768a65e0ad2799c73fd3 |
container_end_page | 1029 |
container_issue | 6 |
container_start_page | 1022 |
container_title | Chinese Journal of Electronics |
container_volume | 30 |
creator | Zhiyao, YANG Pinhui, KE Zhixiong, CHEN |
description | Three new secondary constructions of generalized bent functions are presented. We provide a secondary construction of generalized bent functions from indirect sum methods proposed by Carlet et al. A new secondary construction of generalized bent functions from four initial functions is also investigated. We demonstrate that many known constructions can be derived from our proposed construction as special cases by choosing proper initial functions and parameters. By modifying the new construction, a novel secondary construction of generalized bent functions from two initial generalized bent functions is obtained. For the binary case, the dual functions of the bent functions by our method are presented, which share the same formula as the indirect sum. |
doi_str_mv | 10.1049/cje.2021.08.003 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_cje_2021_08_003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CJE212128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2428-61bef49b5fe7e46a4b6afadc7c3e8c40540e3abc5b4d768a65e0ad2799c73fd3</originalsourceid><addsrcrecordid>eNqFj09Lw0AQxRdRMNSeve4XSDr7PzlqaGul6MHel83uLERiIklKqZ_eLfUuc3gD771hfoQ8MigYyGrlP7HgwFkBZQEgbkjGwahcqcrckowB57nUStyT5TS1DYA2oBjjGane8EQ_0A99cOOZ1kM_zePRz21a6BDpFnscXdf-YKDP2M90c-yv7gO5i66bcPmnC3LYrA_1S75_3-7qp33uueRlrlmDUVaNimhQaicb7aIL3niBpZegJKBwjVeNDEaXTisEF7ipKm9EDGJBVtezfhymacRov8f2K_1qGdgLu03s9sJuobSJPTX0tXFqOzz_F7f165qzNKX4BVRIXhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Secondary Constructions of Generalized Bent Functions</title><source>IEEE Xplore All Journals</source><source>IET Digital Library</source><creator>Zhiyao, YANG ; Pinhui, KE ; Zhixiong, CHEN</creator><creatorcontrib>Zhiyao, YANG ; Pinhui, KE ; Zhixiong, CHEN</creatorcontrib><description>Three new secondary constructions of generalized bent functions are presented. We provide a secondary construction of generalized bent functions from indirect sum methods proposed by Carlet et al. A new secondary construction of generalized bent functions from four initial functions is also investigated. We demonstrate that many known constructions can be derived from our proposed construction as special cases by choosing proper initial functions and parameters. By modifying the new construction, a novel secondary construction of generalized bent functions from two initial generalized bent functions is obtained. For the binary case, the dual functions of the bent functions by our method are presented, which share the same formula as the indirect sum.</description><identifier>ISSN: 1022-4653</identifier><identifier>EISSN: 2075-5597</identifier><identifier>DOI: 10.1049/cje.2021.08.003</identifier><language>eng</language><publisher>Published by the IET on behalf of the CIE</publisher><subject>Bent function ; Generalized bent function ; Indirect sum ; Walsh‐Hadamard transform</subject><ispartof>Chinese Journal of Electronics, 2021-11, Vol.30 (6), p.1022-1029</ispartof><rights>2021 Chinese Institute of Electronics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2428-61bef49b5fe7e46a4b6afadc7c3e8c40540e3abc5b4d768a65e0ad2799c73fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhiyao, YANG</creatorcontrib><creatorcontrib>Pinhui, KE</creatorcontrib><creatorcontrib>Zhixiong, CHEN</creatorcontrib><title>New Secondary Constructions of Generalized Bent Functions</title><title>Chinese Journal of Electronics</title><description>Three new secondary constructions of generalized bent functions are presented. We provide a secondary construction of generalized bent functions from indirect sum methods proposed by Carlet et al. A new secondary construction of generalized bent functions from four initial functions is also investigated. We demonstrate that many known constructions can be derived from our proposed construction as special cases by choosing proper initial functions and parameters. By modifying the new construction, a novel secondary construction of generalized bent functions from two initial generalized bent functions is obtained. For the binary case, the dual functions of the bent functions by our method are presented, which share the same formula as the indirect sum.</description><subject>Bent function</subject><subject>Generalized bent function</subject><subject>Indirect sum</subject><subject>Walsh‐Hadamard transform</subject><issn>1022-4653</issn><issn>2075-5597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFj09Lw0AQxRdRMNSeve4XSDr7PzlqaGul6MHel83uLERiIklKqZ_eLfUuc3gD771hfoQ8MigYyGrlP7HgwFkBZQEgbkjGwahcqcrckowB57nUStyT5TS1DYA2oBjjGane8EQ_0A99cOOZ1kM_zePRz21a6BDpFnscXdf-YKDP2M90c-yv7gO5i66bcPmnC3LYrA_1S75_3-7qp33uueRlrlmDUVaNimhQaicb7aIL3niBpZegJKBwjVeNDEaXTisEF7ipKm9EDGJBVtezfhymacRov8f2K_1qGdgLu03s9sJuobSJPTX0tXFqOzz_F7f165qzNKX4BVRIXhA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhiyao, YANG</creator><creator>Pinhui, KE</creator><creator>Zhixiong, CHEN</creator><general>Published by the IET on behalf of the CIE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202111</creationdate><title>New Secondary Constructions of Generalized Bent Functions</title><author>Zhiyao, YANG ; Pinhui, KE ; Zhixiong, CHEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2428-61bef49b5fe7e46a4b6afadc7c3e8c40540e3abc5b4d768a65e0ad2799c73fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bent function</topic><topic>Generalized bent function</topic><topic>Indirect sum</topic><topic>Walsh‐Hadamard transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhiyao, YANG</creatorcontrib><creatorcontrib>Pinhui, KE</creatorcontrib><creatorcontrib>Zhixiong, CHEN</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese Journal of Electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhiyao, YANG</au><au>Pinhui, KE</au><au>Zhixiong, CHEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Secondary Constructions of Generalized Bent Functions</atitle><jtitle>Chinese Journal of Electronics</jtitle><date>2021-11</date><risdate>2021</risdate><volume>30</volume><issue>6</issue><spage>1022</spage><epage>1029</epage><pages>1022-1029</pages><issn>1022-4653</issn><eissn>2075-5597</eissn><abstract>Three new secondary constructions of generalized bent functions are presented. We provide a secondary construction of generalized bent functions from indirect sum methods proposed by Carlet et al. A new secondary construction of generalized bent functions from four initial functions is also investigated. We demonstrate that many known constructions can be derived from our proposed construction as special cases by choosing proper initial functions and parameters. By modifying the new construction, a novel secondary construction of generalized bent functions from two initial generalized bent functions is obtained. For the binary case, the dual functions of the bent functions by our method are presented, which share the same formula as the indirect sum.</abstract><pub>Published by the IET on behalf of the CIE</pub><doi>10.1049/cje.2021.08.003</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-4653 |
ispartof | Chinese Journal of Electronics, 2021-11, Vol.30 (6), p.1022-1029 |
issn | 1022-4653 2075-5597 |
language | eng |
recordid | cdi_crossref_primary_10_1049_cje_2021_08_003 |
source | IEEE Xplore All Journals; IET Digital Library |
subjects | Bent function Generalized bent function Indirect sum Walsh‐Hadamard transform |
title | New Secondary Constructions of Generalized Bent Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Secondary%20Constructions%20of%20Generalized%20Bent%20Functions&rft.jtitle=Chinese%20Journal%20of%20Electronics&rft.au=Zhiyao,%20YANG&rft.date=2021-11&rft.volume=30&rft.issue=6&rft.spage=1022&rft.epage=1029&rft.pages=1022-1029&rft.issn=1022-4653&rft.eissn=2075-5597&rft_id=info:doi/10.1049/cje.2021.08.003&rft_dat=%3Cwiley_cross%3ECJE212128%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2428-61bef49b5fe7e46a4b6afadc7c3e8c40540e3abc5b4d768a65e0ad2799c73fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |