Loading…

LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique

In this Letter, the Logical Jaya optimisation is proposed as an extension of the Jaya optimisation algorithm to improve the cognitive workload (CW) assessment technique where channel selection for the EEG signal act as a binary optimisation problem. Channel selection is very crucial, time-consuming...

Full description

Saved in:
Bibliographic Details
Published in:Electronics letters 2020-07, Vol.56 (15), p.793-795
Main Authors: Mohdiwale, S, Sahu, M, Sinha, G.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3
cites cdi_FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3
container_end_page 795
container_issue 15
container_start_page 793
container_title Electronics letters
container_volume 56
creator Mohdiwale, S
Sahu, M
Sinha, G.R
description In this Letter, the Logical Jaya optimisation is proposed as an extension of the Jaya optimisation algorithm to improve the cognitive workload (CW) assessment technique where channel selection for the EEG signal act as a binary optimisation problem. Channel selection is very crucial, time-consuming and requires expertise, specially when brain cognitive load is considered. The proposed approach is designed such that it not only improves the performance of the assessment model of CW but also reduces the computational cost. The approach also helps in the automation of brain analysis. The results obtained show that performance is improved by 22% than existing approaches to an average of >90% accuracy in different scenarios. The channels obtained using the approach also provided accurate active brain regions during CW analogous to previous studies.
doi_str_mv 10.1049/el.2020.1011
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_el_2020_1011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELL2BF07121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3</originalsourceid><addsrcrecordid>eNp9kLtOxEAMRUcIJFawHR8wBQUFATuPTVIC4qlINCDRRc7Eww4kmTATQMvXk7AUFCuqK9vnWvYV4gDhBCHOT7k5CSGcCsQtMcMogSBHfNoWMwCMggTzeFfMvTcVYIzxAmKcia_ijlYkbT-Y1ngajO2CijzXUi2p67iRnhtWU19S3ztLaim1dbJnN0pLnWJp2nHwwS13g7RaKvvcmcF8sPy07rWxVEvynr3_AQZWy868vfO-2NHUeJ7_6p54vLp8uLgJivvr24uzIlBRhhjkKWudYrqoMoIwr1WWJ4gaFukiq7BKABjiDCIgTUkca06oDitMw5oQa6ijPXG83quc9d6xLntnWnKrEqGcoiu5Kafoyim6EU_W-KdpePUvW14WRXh-BSmGk-9w7TM8lC_23XXjUyPxB-9rPWJHG7CNl3wDgiKM0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique</title><source>Wiley Online Library Open Access</source><creator>Mohdiwale, S ; Sahu, M ; Sinha, G.R</creator><creatorcontrib>Mohdiwale, S ; Sahu, M ; Sinha, G.R</creatorcontrib><description>In this Letter, the Logical Jaya optimisation is proposed as an extension of the Jaya optimisation algorithm to improve the cognitive workload (CW) assessment technique where channel selection for the EEG signal act as a binary optimisation problem. Channel selection is very crucial, time-consuming and requires expertise, specially when brain cognitive load is considered. The proposed approach is designed such that it not only improves the performance of the assessment model of CW but also reduces the computational cost. The approach also helps in the automation of brain analysis. The results obtained show that performance is improved by 22% than existing approaches to an average of &gt;90% accuracy in different scenarios. The channels obtained using the approach also provided accurate active brain regions during CW analogous to previous studies.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2020.1011</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>binary optimisation problem ; brain analysis ; brain cognitive load ; cognition ; cognitive workload assessment technique ; CW analogous ; EEG signal ; electroencephalography ; LJaya optimisation‐based channel selection approach ; logical Jaya optimisation ; medical signal processing ; neurophysiology ; optimisation ; performance improvement ; signal classification ; Signal processing</subject><ispartof>Electronics letters, 2020-07, Vol.56 (15), p.793-795</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3</citedby><cites>FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3</cites><orcidid>0000-0002-6195-0830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2020.1011$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2020.1011$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.1011$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Mohdiwale, S</creatorcontrib><creatorcontrib>Sahu, M</creatorcontrib><creatorcontrib>Sinha, G.R</creatorcontrib><title>LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique</title><title>Electronics letters</title><description>In this Letter, the Logical Jaya optimisation is proposed as an extension of the Jaya optimisation algorithm to improve the cognitive workload (CW) assessment technique where channel selection for the EEG signal act as a binary optimisation problem. Channel selection is very crucial, time-consuming and requires expertise, specially when brain cognitive load is considered. The proposed approach is designed such that it not only improves the performance of the assessment model of CW but also reduces the computational cost. The approach also helps in the automation of brain analysis. The results obtained show that performance is improved by 22% than existing approaches to an average of &gt;90% accuracy in different scenarios. The channels obtained using the approach also provided accurate active brain regions during CW analogous to previous studies.</description><subject>binary optimisation problem</subject><subject>brain analysis</subject><subject>brain cognitive load</subject><subject>cognition</subject><subject>cognitive workload assessment technique</subject><subject>CW analogous</subject><subject>EEG signal</subject><subject>electroencephalography</subject><subject>LJaya optimisation‐based channel selection approach</subject><subject>logical Jaya optimisation</subject><subject>medical signal processing</subject><subject>neurophysiology</subject><subject>optimisation</subject><subject>performance improvement</subject><subject>signal classification</subject><subject>Signal processing</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxEAMRUcIJFawHR8wBQUFATuPTVIC4qlINCDRRc7Eww4kmTATQMvXk7AUFCuqK9vnWvYV4gDhBCHOT7k5CSGcCsQtMcMogSBHfNoWMwCMggTzeFfMvTcVYIzxAmKcia_ijlYkbT-Y1ngajO2CijzXUi2p67iRnhtWU19S3ztLaim1dbJnN0pLnWJp2nHwwS13g7RaKvvcmcF8sPy07rWxVEvynr3_AQZWy868vfO-2NHUeJ7_6p54vLp8uLgJivvr24uzIlBRhhjkKWudYrqoMoIwr1WWJ4gaFukiq7BKABjiDCIgTUkca06oDitMw5oQa6ijPXG83quc9d6xLntnWnKrEqGcoiu5Kafoyim6EU_W-KdpePUvW14WRXh-BSmGk-9w7TM8lC_23XXjUyPxB-9rPWJHG7CNl3wDgiKM0Q</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Mohdiwale, S</creator><creator>Sahu, M</creator><creator>Sinha, G.R</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6195-0830</orcidid></search><sort><creationdate>20200723</creationdate><title>LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique</title><author>Mohdiwale, S ; Sahu, M ; Sinha, G.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>binary optimisation problem</topic><topic>brain analysis</topic><topic>brain cognitive load</topic><topic>cognition</topic><topic>cognitive workload assessment technique</topic><topic>CW analogous</topic><topic>EEG signal</topic><topic>electroencephalography</topic><topic>LJaya optimisation‐based channel selection approach</topic><topic>logical Jaya optimisation</topic><topic>medical signal processing</topic><topic>neurophysiology</topic><topic>optimisation</topic><topic>performance improvement</topic><topic>signal classification</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohdiwale, S</creatorcontrib><creatorcontrib>Sahu, M</creatorcontrib><creatorcontrib>Sinha, G.R</creatorcontrib><collection>CrossRef</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohdiwale, S</au><au>Sahu, M</au><au>Sinha, G.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique</atitle><jtitle>Electronics letters</jtitle><date>2020-07-23</date><risdate>2020</risdate><volume>56</volume><issue>15</issue><spage>793</spage><epage>795</epage><pages>793-795</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>In this Letter, the Logical Jaya optimisation is proposed as an extension of the Jaya optimisation algorithm to improve the cognitive workload (CW) assessment technique where channel selection for the EEG signal act as a binary optimisation problem. Channel selection is very crucial, time-consuming and requires expertise, specially when brain cognitive load is considered. The proposed approach is designed such that it not only improves the performance of the assessment model of CW but also reduces the computational cost. The approach also helps in the automation of brain analysis. The results obtained show that performance is improved by 22% than existing approaches to an average of &gt;90% accuracy in different scenarios. The channels obtained using the approach also provided accurate active brain regions during CW analogous to previous studies.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2020.1011</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-6195-0830</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2020-07, Vol.56 (15), p.793-795
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_crossref_primary_10_1049_el_2020_1011
source Wiley Online Library Open Access
subjects binary optimisation problem
brain analysis
brain cognitive load
cognition
cognitive workload assessment technique
CW analogous
EEG signal
electroencephalography
LJaya optimisation‐based channel selection approach
logical Jaya optimisation
medical signal processing
neurophysiology
optimisation
performance improvement
signal classification
Signal processing
title LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LJaya%20optimisation-based%20channel%20selection%20approach%20for%20performance%20improvement%20of%20cognitive%20workload%20assessment%20technique&rft.jtitle=Electronics%20letters&rft.au=Mohdiwale,%20S&rft.date=2020-07-23&rft.volume=56&rft.issue=15&rft.spage=793&rft.epage=795&rft.pages=793-795&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2020.1011&rft_dat=%3Cwiley_24P%3EELL2BF07121%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true