Loading…
LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique
In this Letter, the Logical Jaya optimisation is proposed as an extension of the Jaya optimisation algorithm to improve the cognitive workload (CW) assessment technique where channel selection for the EEG signal act as a binary optimisation problem. Channel selection is very crucial, time-consuming...
Saved in:
Published in: | Electronics letters 2020-07, Vol.56 (15), p.793-795 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3 |
container_end_page | 795 |
container_issue | 15 |
container_start_page | 793 |
container_title | Electronics letters |
container_volume | 56 |
creator | Mohdiwale, S Sahu, M Sinha, G.R |
description | In this Letter, the Logical Jaya optimisation is proposed as an extension of the Jaya optimisation algorithm to improve the cognitive workload (CW) assessment technique where channel selection for the EEG signal act as a binary optimisation problem. Channel selection is very crucial, time-consuming and requires expertise, specially when brain cognitive load is considered. The proposed approach is designed such that it not only improves the performance of the assessment model of CW but also reduces the computational cost. The approach also helps in the automation of brain analysis. The results obtained show that performance is improved by 22% than existing approaches to an average of >90% accuracy in different scenarios. The channels obtained using the approach also provided accurate active brain regions during CW analogous to previous studies. |
doi_str_mv | 10.1049/el.2020.1011 |
format | article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_el_2020_1011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELL2BF07121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3</originalsourceid><addsrcrecordid>eNp9kLtOxEAMRUcIJFawHR8wBQUFATuPTVIC4qlINCDRRc7Eww4kmTATQMvXk7AUFCuqK9vnWvYV4gDhBCHOT7k5CSGcCsQtMcMogSBHfNoWMwCMggTzeFfMvTcVYIzxAmKcia_ijlYkbT-Y1ngajO2CijzXUi2p67iRnhtWU19S3ztLaim1dbJnN0pLnWJp2nHwwS13g7RaKvvcmcF8sPy07rWxVEvynr3_AQZWy868vfO-2NHUeJ7_6p54vLp8uLgJivvr24uzIlBRhhjkKWudYrqoMoIwr1WWJ4gaFukiq7BKABjiDCIgTUkca06oDitMw5oQa6ijPXG83quc9d6xLntnWnKrEqGcoiu5Kafoyim6EU_W-KdpePUvW14WRXh-BSmGk-9w7TM8lC_23XXjUyPxB-9rPWJHG7CNl3wDgiKM0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique</title><source>Wiley Online Library Open Access</source><creator>Mohdiwale, S ; Sahu, M ; Sinha, G.R</creator><creatorcontrib>Mohdiwale, S ; Sahu, M ; Sinha, G.R</creatorcontrib><description>In this Letter, the Logical Jaya optimisation is proposed as an extension of the Jaya optimisation algorithm to improve the cognitive workload (CW) assessment technique where channel selection for the EEG signal act as a binary optimisation problem. Channel selection is very crucial, time-consuming and requires expertise, specially when brain cognitive load is considered. The proposed approach is designed such that it not only improves the performance of the assessment model of CW but also reduces the computational cost. The approach also helps in the automation of brain analysis. The results obtained show that performance is improved by 22% than existing approaches to an average of >90% accuracy in different scenarios. The channels obtained using the approach also provided accurate active brain regions during CW analogous to previous studies.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2020.1011</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>binary optimisation problem ; brain analysis ; brain cognitive load ; cognition ; cognitive workload assessment technique ; CW analogous ; EEG signal ; electroencephalography ; LJaya optimisation‐based channel selection approach ; logical Jaya optimisation ; medical signal processing ; neurophysiology ; optimisation ; performance improvement ; signal classification ; Signal processing</subject><ispartof>Electronics letters, 2020-07, Vol.56 (15), p.793-795</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3</citedby><cites>FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3</cites><orcidid>0000-0002-6195-0830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2020.1011$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2020.1011$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.1011$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Mohdiwale, S</creatorcontrib><creatorcontrib>Sahu, M</creatorcontrib><creatorcontrib>Sinha, G.R</creatorcontrib><title>LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique</title><title>Electronics letters</title><description>In this Letter, the Logical Jaya optimisation is proposed as an extension of the Jaya optimisation algorithm to improve the cognitive workload (CW) assessment technique where channel selection for the EEG signal act as a binary optimisation problem. Channel selection is very crucial, time-consuming and requires expertise, specially when brain cognitive load is considered. The proposed approach is designed such that it not only improves the performance of the assessment model of CW but also reduces the computational cost. The approach also helps in the automation of brain analysis. The results obtained show that performance is improved by 22% than existing approaches to an average of >90% accuracy in different scenarios. The channels obtained using the approach also provided accurate active brain regions during CW analogous to previous studies.</description><subject>binary optimisation problem</subject><subject>brain analysis</subject><subject>brain cognitive load</subject><subject>cognition</subject><subject>cognitive workload assessment technique</subject><subject>CW analogous</subject><subject>EEG signal</subject><subject>electroencephalography</subject><subject>LJaya optimisation‐based channel selection approach</subject><subject>logical Jaya optimisation</subject><subject>medical signal processing</subject><subject>neurophysiology</subject><subject>optimisation</subject><subject>performance improvement</subject><subject>signal classification</subject><subject>Signal processing</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxEAMRUcIJFawHR8wBQUFATuPTVIC4qlINCDRRc7Eww4kmTATQMvXk7AUFCuqK9vnWvYV4gDhBCHOT7k5CSGcCsQtMcMogSBHfNoWMwCMggTzeFfMvTcVYIzxAmKcia_ijlYkbT-Y1ngajO2CijzXUi2p67iRnhtWU19S3ztLaim1dbJnN0pLnWJp2nHwwS13g7RaKvvcmcF8sPy07rWxVEvynr3_AQZWy868vfO-2NHUeJ7_6p54vLp8uLgJivvr24uzIlBRhhjkKWudYrqoMoIwr1WWJ4gaFukiq7BKABjiDCIgTUkca06oDitMw5oQa6ijPXG83quc9d6xLntnWnKrEqGcoiu5Kafoyim6EU_W-KdpePUvW14WRXh-BSmGk-9w7TM8lC_23XXjUyPxB-9rPWJHG7CNl3wDgiKM0Q</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Mohdiwale, S</creator><creator>Sahu, M</creator><creator>Sinha, G.R</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6195-0830</orcidid></search><sort><creationdate>20200723</creationdate><title>LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique</title><author>Mohdiwale, S ; Sahu, M ; Sinha, G.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>binary optimisation problem</topic><topic>brain analysis</topic><topic>brain cognitive load</topic><topic>cognition</topic><topic>cognitive workload assessment technique</topic><topic>CW analogous</topic><topic>EEG signal</topic><topic>electroencephalography</topic><topic>LJaya optimisation‐based channel selection approach</topic><topic>logical Jaya optimisation</topic><topic>medical signal processing</topic><topic>neurophysiology</topic><topic>optimisation</topic><topic>performance improvement</topic><topic>signal classification</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohdiwale, S</creatorcontrib><creatorcontrib>Sahu, M</creatorcontrib><creatorcontrib>Sinha, G.R</creatorcontrib><collection>CrossRef</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohdiwale, S</au><au>Sahu, M</au><au>Sinha, G.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique</atitle><jtitle>Electronics letters</jtitle><date>2020-07-23</date><risdate>2020</risdate><volume>56</volume><issue>15</issue><spage>793</spage><epage>795</epage><pages>793-795</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>In this Letter, the Logical Jaya optimisation is proposed as an extension of the Jaya optimisation algorithm to improve the cognitive workload (CW) assessment technique where channel selection for the EEG signal act as a binary optimisation problem. Channel selection is very crucial, time-consuming and requires expertise, specially when brain cognitive load is considered. The proposed approach is designed such that it not only improves the performance of the assessment model of CW but also reduces the computational cost. The approach also helps in the automation of brain analysis. The results obtained show that performance is improved by 22% than existing approaches to an average of >90% accuracy in different scenarios. The channels obtained using the approach also provided accurate active brain regions during CW analogous to previous studies.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2020.1011</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-6195-0830</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2020-07, Vol.56 (15), p.793-795 |
issn | 0013-5194 1350-911X 1350-911X |
language | eng |
recordid | cdi_crossref_primary_10_1049_el_2020_1011 |
source | Wiley Online Library Open Access |
subjects | binary optimisation problem brain analysis brain cognitive load cognition cognitive workload assessment technique CW analogous EEG signal electroencephalography LJaya optimisation‐based channel selection approach logical Jaya optimisation medical signal processing neurophysiology optimisation performance improvement signal classification Signal processing |
title | LJaya optimisation-based channel selection approach for performance improvement of cognitive workload assessment technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LJaya%20optimisation-based%20channel%20selection%20approach%20for%20performance%20improvement%20of%20cognitive%20workload%20assessment%20technique&rft.jtitle=Electronics%20letters&rft.au=Mohdiwale,%20S&rft.date=2020-07-23&rft.volume=56&rft.issue=15&rft.spage=793&rft.epage=795&rft.pages=793-795&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2020.1011&rft_dat=%3Cwiley_24P%3EELL2BF07121%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3811-97eff7176b8a029dc89511f06768b1b500e048030afa544fe5ad2b172da11d0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |