Loading…

Masked SIFT with align-based refinement for contactless palmprint recognition

Contactless palmprint is considered more user convenient than other biometrics due to its acquisition simplicity and less-private nature. Many challenges arise which affect the performance of common contact-based methods when applied to a contactless environment. For example, pose and illumination v...

Full description

Saved in:
Bibliographic Details
Published in:IET biometrics 2019-03, Vol.8 (2), p.150-158
Main Authors: ELSayed, Ahmed S, Ebeid, Hala M, Roushdy, Mohamed I, Fayed, Zaki T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653
cites cdi_FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653
container_end_page 158
container_issue 2
container_start_page 150
container_title IET biometrics
container_volume 8
creator ELSayed, Ahmed S
Ebeid, Hala M
Roushdy, Mohamed I
Fayed, Zaki T
description Contactless palmprint is considered more user convenient than other biometrics due to its acquisition simplicity and less-private nature. Many challenges arise which affect the performance of common contact-based methods when applied to a contactless environment. For example, pose and illumination variations affect the layout and visibility of palm lines. This study proposes a SIFT-based method with three main modifications from the traditional SIFT. First, the palm regions with no significant lines/wrinkles are masked out to reduce the false features. A region with multi-lines is then described by multi-descriptors rather than a single one. Second, only query and target keypoints with small rotation difference are compared together, instead of comparing them all. This speed-up the comparison and enhance the accuracy, versus SIFT, by reducing the wrong matches. Third, an align-based refinement is applied to filter out the incorrect matches. The method is tested on three contactless hand databases; IITD, GPDS and Sfax-Miracl. It achieves a verification equal error rate of 0.72, 0.84 and 1.14% and a correct identification rate of 98.9, 99 and 98.9% on each database, respectively. These results are significantly better than the state-of-art methods on the same databases by 1.9% for verification and 3.2% for identification.
doi_str_mv 10.1049/iet-bmt.2018.5012
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_iet_bmt_2018_5012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092272969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653</originalsourceid><addsrcrecordid>eNqFkMFPwyAUxonRxGXuD_DWxDMTKJTizS2rLtniwXkmtKOT2dIJLMv-e2lqdjNygTy-773v_QC4x2iKERWPRgdYtmFKEM6nDGFyBUYEUQ6poNn15Z3mt2Di_R7Fk-WUYTwC67XyX3qbvC-LTXIy4TNRjdlZWCofq07XxupW25DUnUuqzgZVhUZ7nxxU0x6ciT9OV93OmmA6ewduatV4Pfm9x-CjWGzmr3D19rKcP69gRRHjkGwJTzONGS9FiRSqGBNZpRnjlOVKoJopirSIgVOmtBKcxQIvaywyWm4zlo7Bw9D34Lrvo_ZB7rujs3GkTJEghBORiajCg6pynfdxFxkDt8qdJUayBycjOBnByR6c7MFFz9PgOZlGn_83yNl6QWZFJJryaIaDuZddEv097Ac3YYIp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092272969</pqid></control><display><type>article</type><title>Masked SIFT with align-based refinement for contactless palmprint recognition</title><source>Wiley Online Library Open Access</source><creator>ELSayed, Ahmed S ; Ebeid, Hala M ; Roushdy, Mohamed I ; Fayed, Zaki T</creator><creatorcontrib>ELSayed, Ahmed S ; Ebeid, Hala M ; Roushdy, Mohamed I ; Fayed, Zaki T</creatorcontrib><description>Contactless palmprint is considered more user convenient than other biometrics due to its acquisition simplicity and less-private nature. Many challenges arise which affect the performance of common contact-based methods when applied to a contactless environment. For example, pose and illumination variations affect the layout and visibility of palm lines. This study proposes a SIFT-based method with three main modifications from the traditional SIFT. First, the palm regions with no significant lines/wrinkles are masked out to reduce the false features. A region with multi-lines is then described by multi-descriptors rather than a single one. Second, only query and target keypoints with small rotation difference are compared together, instead of comparing them all. This speed-up the comparison and enhance the accuracy, versus SIFT, by reducing the wrong matches. Third, an align-based refinement is applied to filter out the incorrect matches. The method is tested on three contactless hand databases; IITD, GPDS and Sfax-Miracl. It achieves a verification equal error rate of 0.72, 0.84 and 1.14% and a correct identification rate of 98.9, 99 and 98.9% on each database, respectively. These results are significantly better than the state-of-art methods on the same databases by 1.9% for verification and 3.2% for identification.</description><identifier>ISSN: 2047-4938</identifier><identifier>ISSN: 2047-4946</identifier><identifier>EISSN: 2047-4946</identifier><identifier>DOI: 10.1049/iet-bmt.2018.5012</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Accuracy ; acquisition simplicity ; align‐based refinement ; Biometric recognition systems ; Biometrics ; biometrics (access control) ; Cameras ; common contact‐based methods ; comparison process ; contactless environment ; contactless hand databases ; contactless palmprint recognition ; Discriminant analysis ; Error correction ; false features ; feature extraction ; Fourier transforms ; illumination variations ; image matching ; layout ; less‐private nature ; main modifications ; masked SIFT ; Methods ; multidescriptors ; multilines ; Palm ; palm lines ; palm regions ; palmprint recognition ; query keypoints ; Research Article ; rotation difference ; significant lines/wrinkles ; traditional SIFT ; transforms ; user convenient ; Verification ; verification equal error rate ; visibility</subject><ispartof>IET biometrics, 2019-03, Vol.8 (2), p.150-158</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2019 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering &amp; Technology 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653</citedby><cites>FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-bmt.2018.5012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-bmt.2018.5012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-bmt.2018.5012$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>ELSayed, Ahmed S</creatorcontrib><creatorcontrib>Ebeid, Hala M</creatorcontrib><creatorcontrib>Roushdy, Mohamed I</creatorcontrib><creatorcontrib>Fayed, Zaki T</creatorcontrib><title>Masked SIFT with align-based refinement for contactless palmprint recognition</title><title>IET biometrics</title><description>Contactless palmprint is considered more user convenient than other biometrics due to its acquisition simplicity and less-private nature. Many challenges arise which affect the performance of common contact-based methods when applied to a contactless environment. For example, pose and illumination variations affect the layout and visibility of palm lines. This study proposes a SIFT-based method with three main modifications from the traditional SIFT. First, the palm regions with no significant lines/wrinkles are masked out to reduce the false features. A region with multi-lines is then described by multi-descriptors rather than a single one. Second, only query and target keypoints with small rotation difference are compared together, instead of comparing them all. This speed-up the comparison and enhance the accuracy, versus SIFT, by reducing the wrong matches. Third, an align-based refinement is applied to filter out the incorrect matches. The method is tested on three contactless hand databases; IITD, GPDS and Sfax-Miracl. It achieves a verification equal error rate of 0.72, 0.84 and 1.14% and a correct identification rate of 98.9, 99 and 98.9% on each database, respectively. These results are significantly better than the state-of-art methods on the same databases by 1.9% for verification and 3.2% for identification.</description><subject>Accuracy</subject><subject>acquisition simplicity</subject><subject>align‐based refinement</subject><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>biometrics (access control)</subject><subject>Cameras</subject><subject>common contact‐based methods</subject><subject>comparison process</subject><subject>contactless environment</subject><subject>contactless hand databases</subject><subject>contactless palmprint recognition</subject><subject>Discriminant analysis</subject><subject>Error correction</subject><subject>false features</subject><subject>feature extraction</subject><subject>Fourier transforms</subject><subject>illumination variations</subject><subject>image matching</subject><subject>layout</subject><subject>less‐private nature</subject><subject>main modifications</subject><subject>masked SIFT</subject><subject>Methods</subject><subject>multidescriptors</subject><subject>multilines</subject><subject>Palm</subject><subject>palm lines</subject><subject>palm regions</subject><subject>palmprint recognition</subject><subject>query keypoints</subject><subject>Research Article</subject><subject>rotation difference</subject><subject>significant lines/wrinkles</subject><subject>traditional SIFT</subject><subject>transforms</subject><subject>user convenient</subject><subject>Verification</subject><subject>verification equal error rate</subject><subject>visibility</subject><issn>2047-4938</issn><issn>2047-4946</issn><issn>2047-4946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwyAUxonRxGXuD_DWxDMTKJTizS2rLtniwXkmtKOT2dIJLMv-e2lqdjNygTy-773v_QC4x2iKERWPRgdYtmFKEM6nDGFyBUYEUQ6poNn15Z3mt2Di_R7Fk-WUYTwC67XyX3qbvC-LTXIy4TNRjdlZWCofq07XxupW25DUnUuqzgZVhUZ7nxxU0x6ciT9OV93OmmA6ewduatV4Pfm9x-CjWGzmr3D19rKcP69gRRHjkGwJTzONGS9FiRSqGBNZpRnjlOVKoJopirSIgVOmtBKcxQIvaywyWm4zlo7Bw9D34Lrvo_ZB7rujs3GkTJEghBORiajCg6pynfdxFxkDt8qdJUayBycjOBnByR6c7MFFz9PgOZlGn_83yNl6QWZFJJryaIaDuZddEv097Ac3YYIp</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>ELSayed, Ahmed S</creator><creator>Ebeid, Hala M</creator><creator>Roushdy, Mohamed I</creator><creator>Fayed, Zaki T</creator><general>The Institution of Engineering and Technology</general><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201903</creationdate><title>Masked SIFT with align-based refinement for contactless palmprint recognition</title><author>ELSayed, Ahmed S ; Ebeid, Hala M ; Roushdy, Mohamed I ; Fayed, Zaki T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>acquisition simplicity</topic><topic>align‐based refinement</topic><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>biometrics (access control)</topic><topic>Cameras</topic><topic>common contact‐based methods</topic><topic>comparison process</topic><topic>contactless environment</topic><topic>contactless hand databases</topic><topic>contactless palmprint recognition</topic><topic>Discriminant analysis</topic><topic>Error correction</topic><topic>false features</topic><topic>feature extraction</topic><topic>Fourier transforms</topic><topic>illumination variations</topic><topic>image matching</topic><topic>layout</topic><topic>less‐private nature</topic><topic>main modifications</topic><topic>masked SIFT</topic><topic>Methods</topic><topic>multidescriptors</topic><topic>multilines</topic><topic>Palm</topic><topic>palm lines</topic><topic>palm regions</topic><topic>palmprint recognition</topic><topic>query keypoints</topic><topic>Research Article</topic><topic>rotation difference</topic><topic>significant lines/wrinkles</topic><topic>traditional SIFT</topic><topic>transforms</topic><topic>user convenient</topic><topic>Verification</topic><topic>verification equal error rate</topic><topic>visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ELSayed, Ahmed S</creatorcontrib><creatorcontrib>Ebeid, Hala M</creatorcontrib><creatorcontrib>Roushdy, Mohamed I</creatorcontrib><creatorcontrib>Fayed, Zaki T</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IET biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ELSayed, Ahmed S</au><au>Ebeid, Hala M</au><au>Roushdy, Mohamed I</au><au>Fayed, Zaki T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Masked SIFT with align-based refinement for contactless palmprint recognition</atitle><jtitle>IET biometrics</jtitle><date>2019-03</date><risdate>2019</risdate><volume>8</volume><issue>2</issue><spage>150</spage><epage>158</epage><pages>150-158</pages><issn>2047-4938</issn><issn>2047-4946</issn><eissn>2047-4946</eissn><abstract>Contactless palmprint is considered more user convenient than other biometrics due to its acquisition simplicity and less-private nature. Many challenges arise which affect the performance of common contact-based methods when applied to a contactless environment. For example, pose and illumination variations affect the layout and visibility of palm lines. This study proposes a SIFT-based method with three main modifications from the traditional SIFT. First, the palm regions with no significant lines/wrinkles are masked out to reduce the false features. A region with multi-lines is then described by multi-descriptors rather than a single one. Second, only query and target keypoints with small rotation difference are compared together, instead of comparing them all. This speed-up the comparison and enhance the accuracy, versus SIFT, by reducing the wrong matches. Third, an align-based refinement is applied to filter out the incorrect matches. The method is tested on three contactless hand databases; IITD, GPDS and Sfax-Miracl. It achieves a verification equal error rate of 0.72, 0.84 and 1.14% and a correct identification rate of 98.9, 99 and 98.9% on each database, respectively. These results are significantly better than the state-of-art methods on the same databases by 1.9% for verification and 3.2% for identification.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-bmt.2018.5012</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2047-4938
ispartof IET biometrics, 2019-03, Vol.8 (2), p.150-158
issn 2047-4938
2047-4946
2047-4946
language eng
recordid cdi_crossref_primary_10_1049_iet_bmt_2018_5012
source Wiley Online Library Open Access
subjects Accuracy
acquisition simplicity
align‐based refinement
Biometric recognition systems
Biometrics
biometrics (access control)
Cameras
common contact‐based methods
comparison process
contactless environment
contactless hand databases
contactless palmprint recognition
Discriminant analysis
Error correction
false features
feature extraction
Fourier transforms
illumination variations
image matching
layout
less‐private nature
main modifications
masked SIFT
Methods
multidescriptors
multilines
Palm
palm lines
palm regions
palmprint recognition
query keypoints
Research Article
rotation difference
significant lines/wrinkles
traditional SIFT
transforms
user convenient
Verification
verification equal error rate
visibility
title Masked SIFT with align-based refinement for contactless palmprint recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Masked%20SIFT%20with%20align-based%20refinement%20for%20contactless%20palmprint%20recognition&rft.jtitle=IET%20biometrics&rft.au=ELSayed,%20Ahmed%20S&rft.date=2019-03&rft.volume=8&rft.issue=2&rft.spage=150&rft.epage=158&rft.pages=150-158&rft.issn=2047-4938&rft.eissn=2047-4946&rft_id=info:doi/10.1049/iet-bmt.2018.5012&rft_dat=%3Cproquest_24P%3E3092272969%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092272969&rft_id=info:pmid/&rfr_iscdi=true