Loading…
Masked SIFT with align-based refinement for contactless palmprint recognition
Contactless palmprint is considered more user convenient than other biometrics due to its acquisition simplicity and less-private nature. Many challenges arise which affect the performance of common contact-based methods when applied to a contactless environment. For example, pose and illumination v...
Saved in:
Published in: | IET biometrics 2019-03, Vol.8 (2), p.150-158 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653 |
---|---|
cites | cdi_FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653 |
container_end_page | 158 |
container_issue | 2 |
container_start_page | 150 |
container_title | IET biometrics |
container_volume | 8 |
creator | ELSayed, Ahmed S Ebeid, Hala M Roushdy, Mohamed I Fayed, Zaki T |
description | Contactless palmprint is considered more user convenient than other biometrics due to its acquisition simplicity and less-private nature. Many challenges arise which affect the performance of common contact-based methods when applied to a contactless environment. For example, pose and illumination variations affect the layout and visibility of palm lines. This study proposes a SIFT-based method with three main modifications from the traditional SIFT. First, the palm regions with no significant lines/wrinkles are masked out to reduce the false features. A region with multi-lines is then described by multi-descriptors rather than a single one. Second, only query and target keypoints with small rotation difference are compared together, instead of comparing them all. This speed-up the comparison and enhance the accuracy, versus SIFT, by reducing the wrong matches. Third, an align-based refinement is applied to filter out the incorrect matches. The method is tested on three contactless hand databases; IITD, GPDS and Sfax-Miracl. It achieves a verification equal error rate of 0.72, 0.84 and 1.14% and a correct identification rate of 98.9, 99 and 98.9% on each database, respectively. These results are significantly better than the state-of-art methods on the same databases by 1.9% for verification and 3.2% for identification. |
doi_str_mv | 10.1049/iet-bmt.2018.5012 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_iet_bmt_2018_5012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092272969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653</originalsourceid><addsrcrecordid>eNqFkMFPwyAUxonRxGXuD_DWxDMTKJTizS2rLtniwXkmtKOT2dIJLMv-e2lqdjNygTy-773v_QC4x2iKERWPRgdYtmFKEM6nDGFyBUYEUQ6poNn15Z3mt2Di_R7Fk-WUYTwC67XyX3qbvC-LTXIy4TNRjdlZWCofq07XxupW25DUnUuqzgZVhUZ7nxxU0x6ciT9OV93OmmA6ewduatV4Pfm9x-CjWGzmr3D19rKcP69gRRHjkGwJTzONGS9FiRSqGBNZpRnjlOVKoJopirSIgVOmtBKcxQIvaywyWm4zlo7Bw9D34Lrvo_ZB7rujs3GkTJEghBORiajCg6pynfdxFxkDt8qdJUayBycjOBnByR6c7MFFz9PgOZlGn_83yNl6QWZFJJryaIaDuZddEv097Ac3YYIp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092272969</pqid></control><display><type>article</type><title>Masked SIFT with align-based refinement for contactless palmprint recognition</title><source>Wiley Online Library Open Access</source><creator>ELSayed, Ahmed S ; Ebeid, Hala M ; Roushdy, Mohamed I ; Fayed, Zaki T</creator><creatorcontrib>ELSayed, Ahmed S ; Ebeid, Hala M ; Roushdy, Mohamed I ; Fayed, Zaki T</creatorcontrib><description>Contactless palmprint is considered more user convenient than other biometrics due to its acquisition simplicity and less-private nature. Many challenges arise which affect the performance of common contact-based methods when applied to a contactless environment. For example, pose and illumination variations affect the layout and visibility of palm lines. This study proposes a SIFT-based method with three main modifications from the traditional SIFT. First, the palm regions with no significant lines/wrinkles are masked out to reduce the false features. A region with multi-lines is then described by multi-descriptors rather than a single one. Second, only query and target keypoints with small rotation difference are compared together, instead of comparing them all. This speed-up the comparison and enhance the accuracy, versus SIFT, by reducing the wrong matches. Third, an align-based refinement is applied to filter out the incorrect matches. The method is tested on three contactless hand databases; IITD, GPDS and Sfax-Miracl. It achieves a verification equal error rate of 0.72, 0.84 and 1.14% and a correct identification rate of 98.9, 99 and 98.9% on each database, respectively. These results are significantly better than the state-of-art methods on the same databases by 1.9% for verification and 3.2% for identification.</description><identifier>ISSN: 2047-4938</identifier><identifier>ISSN: 2047-4946</identifier><identifier>EISSN: 2047-4946</identifier><identifier>DOI: 10.1049/iet-bmt.2018.5012</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Accuracy ; acquisition simplicity ; align‐based refinement ; Biometric recognition systems ; Biometrics ; biometrics (access control) ; Cameras ; common contact‐based methods ; comparison process ; contactless environment ; contactless hand databases ; contactless palmprint recognition ; Discriminant analysis ; Error correction ; false features ; feature extraction ; Fourier transforms ; illumination variations ; image matching ; layout ; less‐private nature ; main modifications ; masked SIFT ; Methods ; multidescriptors ; multilines ; Palm ; palm lines ; palm regions ; palmprint recognition ; query keypoints ; Research Article ; rotation difference ; significant lines/wrinkles ; traditional SIFT ; transforms ; user convenient ; Verification ; verification equal error rate ; visibility</subject><ispartof>IET biometrics, 2019-03, Vol.8 (2), p.150-158</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2019 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering & Technology 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653</citedby><cites>FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-bmt.2018.5012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-bmt.2018.5012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-bmt.2018.5012$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>ELSayed, Ahmed S</creatorcontrib><creatorcontrib>Ebeid, Hala M</creatorcontrib><creatorcontrib>Roushdy, Mohamed I</creatorcontrib><creatorcontrib>Fayed, Zaki T</creatorcontrib><title>Masked SIFT with align-based refinement for contactless palmprint recognition</title><title>IET biometrics</title><description>Contactless palmprint is considered more user convenient than other biometrics due to its acquisition simplicity and less-private nature. Many challenges arise which affect the performance of common contact-based methods when applied to a contactless environment. For example, pose and illumination variations affect the layout and visibility of palm lines. This study proposes a SIFT-based method with three main modifications from the traditional SIFT. First, the palm regions with no significant lines/wrinkles are masked out to reduce the false features. A region with multi-lines is then described by multi-descriptors rather than a single one. Second, only query and target keypoints with small rotation difference are compared together, instead of comparing them all. This speed-up the comparison and enhance the accuracy, versus SIFT, by reducing the wrong matches. Third, an align-based refinement is applied to filter out the incorrect matches. The method is tested on three contactless hand databases; IITD, GPDS and Sfax-Miracl. It achieves a verification equal error rate of 0.72, 0.84 and 1.14% and a correct identification rate of 98.9, 99 and 98.9% on each database, respectively. These results are significantly better than the state-of-art methods on the same databases by 1.9% for verification and 3.2% for identification.</description><subject>Accuracy</subject><subject>acquisition simplicity</subject><subject>align‐based refinement</subject><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>biometrics (access control)</subject><subject>Cameras</subject><subject>common contact‐based methods</subject><subject>comparison process</subject><subject>contactless environment</subject><subject>contactless hand databases</subject><subject>contactless palmprint recognition</subject><subject>Discriminant analysis</subject><subject>Error correction</subject><subject>false features</subject><subject>feature extraction</subject><subject>Fourier transforms</subject><subject>illumination variations</subject><subject>image matching</subject><subject>layout</subject><subject>less‐private nature</subject><subject>main modifications</subject><subject>masked SIFT</subject><subject>Methods</subject><subject>multidescriptors</subject><subject>multilines</subject><subject>Palm</subject><subject>palm lines</subject><subject>palm regions</subject><subject>palmprint recognition</subject><subject>query keypoints</subject><subject>Research Article</subject><subject>rotation difference</subject><subject>significant lines/wrinkles</subject><subject>traditional SIFT</subject><subject>transforms</subject><subject>user convenient</subject><subject>Verification</subject><subject>verification equal error rate</subject><subject>visibility</subject><issn>2047-4938</issn><issn>2047-4946</issn><issn>2047-4946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwyAUxonRxGXuD_DWxDMTKJTizS2rLtniwXkmtKOT2dIJLMv-e2lqdjNygTy-773v_QC4x2iKERWPRgdYtmFKEM6nDGFyBUYEUQ6poNn15Z3mt2Di_R7Fk-WUYTwC67XyX3qbvC-LTXIy4TNRjdlZWCofq07XxupW25DUnUuqzgZVhUZ7nxxU0x6ciT9OV93OmmA6ewduatV4Pfm9x-CjWGzmr3D19rKcP69gRRHjkGwJTzONGS9FiRSqGBNZpRnjlOVKoJopirSIgVOmtBKcxQIvaywyWm4zlo7Bw9D34Lrvo_ZB7rujs3GkTJEghBORiajCg6pynfdxFxkDt8qdJUayBycjOBnByR6c7MFFz9PgOZlGn_83yNl6QWZFJJryaIaDuZddEv097Ac3YYIp</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>ELSayed, Ahmed S</creator><creator>Ebeid, Hala M</creator><creator>Roushdy, Mohamed I</creator><creator>Fayed, Zaki T</creator><general>The Institution of Engineering and Technology</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201903</creationdate><title>Masked SIFT with align-based refinement for contactless palmprint recognition</title><author>ELSayed, Ahmed S ; Ebeid, Hala M ; Roushdy, Mohamed I ; Fayed, Zaki T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>acquisition simplicity</topic><topic>align‐based refinement</topic><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>biometrics (access control)</topic><topic>Cameras</topic><topic>common contact‐based methods</topic><topic>comparison process</topic><topic>contactless environment</topic><topic>contactless hand databases</topic><topic>contactless palmprint recognition</topic><topic>Discriminant analysis</topic><topic>Error correction</topic><topic>false features</topic><topic>feature extraction</topic><topic>Fourier transforms</topic><topic>illumination variations</topic><topic>image matching</topic><topic>layout</topic><topic>less‐private nature</topic><topic>main modifications</topic><topic>masked SIFT</topic><topic>Methods</topic><topic>multidescriptors</topic><topic>multilines</topic><topic>Palm</topic><topic>palm lines</topic><topic>palm regions</topic><topic>palmprint recognition</topic><topic>query keypoints</topic><topic>Research Article</topic><topic>rotation difference</topic><topic>significant lines/wrinkles</topic><topic>traditional SIFT</topic><topic>transforms</topic><topic>user convenient</topic><topic>Verification</topic><topic>verification equal error rate</topic><topic>visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ELSayed, Ahmed S</creatorcontrib><creatorcontrib>Ebeid, Hala M</creatorcontrib><creatorcontrib>Roushdy, Mohamed I</creatorcontrib><creatorcontrib>Fayed, Zaki T</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IET biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ELSayed, Ahmed S</au><au>Ebeid, Hala M</au><au>Roushdy, Mohamed I</au><au>Fayed, Zaki T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Masked SIFT with align-based refinement for contactless palmprint recognition</atitle><jtitle>IET biometrics</jtitle><date>2019-03</date><risdate>2019</risdate><volume>8</volume><issue>2</issue><spage>150</spage><epage>158</epage><pages>150-158</pages><issn>2047-4938</issn><issn>2047-4946</issn><eissn>2047-4946</eissn><abstract>Contactless palmprint is considered more user convenient than other biometrics due to its acquisition simplicity and less-private nature. Many challenges arise which affect the performance of common contact-based methods when applied to a contactless environment. For example, pose and illumination variations affect the layout and visibility of palm lines. This study proposes a SIFT-based method with three main modifications from the traditional SIFT. First, the palm regions with no significant lines/wrinkles are masked out to reduce the false features. A region with multi-lines is then described by multi-descriptors rather than a single one. Second, only query and target keypoints with small rotation difference are compared together, instead of comparing them all. This speed-up the comparison and enhance the accuracy, versus SIFT, by reducing the wrong matches. Third, an align-based refinement is applied to filter out the incorrect matches. The method is tested on three contactless hand databases; IITD, GPDS and Sfax-Miracl. It achieves a verification equal error rate of 0.72, 0.84 and 1.14% and a correct identification rate of 98.9, 99 and 98.9% on each database, respectively. These results are significantly better than the state-of-art methods on the same databases by 1.9% for verification and 3.2% for identification.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-bmt.2018.5012</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2047-4938 |
ispartof | IET biometrics, 2019-03, Vol.8 (2), p.150-158 |
issn | 2047-4938 2047-4946 2047-4946 |
language | eng |
recordid | cdi_crossref_primary_10_1049_iet_bmt_2018_5012 |
source | Wiley Online Library Open Access |
subjects | Accuracy acquisition simplicity align‐based refinement Biometric recognition systems Biometrics biometrics (access control) Cameras common contact‐based methods comparison process contactless environment contactless hand databases contactless palmprint recognition Discriminant analysis Error correction false features feature extraction Fourier transforms illumination variations image matching layout less‐private nature main modifications masked SIFT Methods multidescriptors multilines Palm palm lines palm regions palmprint recognition query keypoints Research Article rotation difference significant lines/wrinkles traditional SIFT transforms user convenient Verification verification equal error rate visibility |
title | Masked SIFT with align-based refinement for contactless palmprint recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Masked%20SIFT%20with%20align-based%20refinement%20for%20contactless%20palmprint%20recognition&rft.jtitle=IET%20biometrics&rft.au=ELSayed,%20Ahmed%20S&rft.date=2019-03&rft.volume=8&rft.issue=2&rft.spage=150&rft.epage=158&rft.pages=150-158&rft.issn=2047-4938&rft.eissn=2047-4946&rft_id=info:doi/10.1049/iet-bmt.2018.5012&rft_dat=%3Cproquest_24P%3E3092272969%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4057-2d2736e157b9b0a0c5596ce557458a90f5a40e993835aea9755a47bf1964bd653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092272969&rft_id=info:pmid/&rfr_iscdi=true |