Loading…

Worst case fair beamforming for multiple multicast groups in multicell networks

The design problem associated with robust downlink beamforming in multicast, multigroup, multicell wireless systems is addressed. The channel state information (CSI) of users is assumed to be imperfect and the uncertainty of CSI is modelled using the Frobenius norm. The objective is to optimise the...

Full description

Saved in:
Bibliographic Details
Published in:IET communications 2019-04, Vol.13 (6), p.664-671
Main Authors: Al-Asadi, Ahmed, Al-Amidie, Muthana, Micheas, Athanasios C, McGarvey, Ronald G, Islam, Naz E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3341-e75a3bef2b86818d736f51ef958fc4f469fe371c793c73eff21dcd69dc367f6d3
cites cdi_FETCH-LOGICAL-c3341-e75a3bef2b86818d736f51ef958fc4f469fe371c793c73eff21dcd69dc367f6d3
container_end_page 671
container_issue 6
container_start_page 664
container_title IET communications
container_volume 13
creator Al-Asadi, Ahmed
Al-Amidie, Muthana
Micheas, Athanasios C
McGarvey, Ronald G
Islam, Naz E
description The design problem associated with robust downlink beamforming in multicast, multigroup, multicell wireless systems is addressed. The channel state information (CSI) of users is assumed to be imperfect and the uncertainty of CSI is modelled using the Frobenius norm. The objective is to optimise the signal-to-interference-plus-noise ratio over all users with a constraint on the maximum total transmitted power. This was achieved through a robust solution using the successive convex approximation (SCA) method. The beamforming problem is treated as a bi-convex problem, which is solved using the iterate-alternative convex technique. Here, the CSI uncertainty is addressed using a convex package through the non-monotone spectral projected gradient method and the beamforming vector is extracted using the SCA method. Also, the authors offer the required condition to extract the beamform vector using the SCA method through a suboptimal solution that always addressed before using different beamforming methods. Their simulation results examine all proposed system parameters in order to show convergence and feasibility of the solution. They also compare the solution with a suboptimal solution and the quality of service method for imperfect CSI in downlink beamforming. Numerical results show that the robust solution achieves the best power efficiency for practical solutions.
doi_str_mv 10.1049/iet-com.2018.5383
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_iet_com_2018_5383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CMU2BF01961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3341-e75a3bef2b86818d736f51ef958fc4f469fe371c793c73eff21dcd69dc367f6d3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRi0EEqVwAHa-QIodxz9hBxUFpKJuqFhaqTOuXJK4slNVvT2OUrGE1XwazZvRPITuKZlRUpQPDvrM-HaWE6pmnCl2gSZUcpopwcTlb87VNbqJcUcI56IoJmj15UPssakiYFu5gDdQtdaH1nVbnCpuD03v9g2MIc31eBv8YR-x6849aBrcQX_04TveoitbNRHuznWK1ouXz_lbtly9vs-flplhrKAZSF6xDdh8o4SiqpZMWE7BllxZU9hClBaYpEaWzEgG1ua0NrUoa8OEtKJmU0THvSb4GANYvQ-urcJJU6IHIzoZ0cmIHozowUhiHkfm6Bo4_Q_o-cc6f14QWgqa4GyEh7GdP4QuvffHsR_Ki3jd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Worst case fair beamforming for multiple multicast groups in multicell networks</title><source>Wiley-Blackwell Open Access Collection</source><creator>Al-Asadi, Ahmed ; Al-Amidie, Muthana ; Micheas, Athanasios C ; McGarvey, Ronald G ; Islam, Naz E</creator><creatorcontrib>Al-Asadi, Ahmed ; Al-Amidie, Muthana ; Micheas, Athanasios C ; McGarvey, Ronald G ; Islam, Naz E</creatorcontrib><description>The design problem associated with robust downlink beamforming in multicast, multigroup, multicell wireless systems is addressed. The channel state information (CSI) of users is assumed to be imperfect and the uncertainty of CSI is modelled using the Frobenius norm. The objective is to optimise the signal-to-interference-plus-noise ratio over all users with a constraint on the maximum total transmitted power. This was achieved through a robust solution using the successive convex approximation (SCA) method. The beamforming problem is treated as a bi-convex problem, which is solved using the iterate-alternative convex technique. Here, the CSI uncertainty is addressed using a convex package through the non-monotone spectral projected gradient method and the beamforming vector is extracted using the SCA method. Also, the authors offer the required condition to extract the beamform vector using the SCA method through a suboptimal solution that always addressed before using different beamforming methods. Their simulation results examine all proposed system parameters in order to show convergence and feasibility of the solution. They also compare the solution with a suboptimal solution and the quality of service method for imperfect CSI in downlink beamforming. Numerical results show that the robust solution achieves the best power efficiency for practical solutions.</description><identifier>ISSN: 1751-8628</identifier><identifier>ISSN: 1751-8636</identifier><identifier>EISSN: 1751-8636</identifier><identifier>DOI: 10.1049/iet-com.2018.5383</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>approximation theory ; array signal processing ; beamforming methods ; beamforming problem ; beamforming vector ; biconvex problem ; cellular radio ; channel state information ; convex package ; convex programming ; CSI uncertainty ; design problem ; Frobenius norm ; gradient methods ; imperfect CSI ; iterate‐alternative convex technique ; maximum total transmitted power ; multicast communication ; multicell networks ; multicell wireless system ; multigroup wireless system ; multiple multicast groups ; nonmonotone spectral projected gradient method ; quality of service ; quality‐of‐service method ; Research Article ; robust downlink beamforming ; SCA method ; signal‐to‐interference‐plus‐noise ratio ; successive convex approximation method ; system parameters ; vectors ; wireless channels ; worst case fair beamforming</subject><ispartof>IET communications, 2019-04, Vol.13 (6), p.664-671</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3341-e75a3bef2b86818d736f51ef958fc4f469fe371c793c73eff21dcd69dc367f6d3</citedby><cites>FETCH-LOGICAL-c3341-e75a3bef2b86818d736f51ef958fc4f469fe371c793c73eff21dcd69dc367f6d3</cites><orcidid>0000-0002-8825-8553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-com.2018.5383$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-com.2018.5383$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-com.2018.5383$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Al-Asadi, Ahmed</creatorcontrib><creatorcontrib>Al-Amidie, Muthana</creatorcontrib><creatorcontrib>Micheas, Athanasios C</creatorcontrib><creatorcontrib>McGarvey, Ronald G</creatorcontrib><creatorcontrib>Islam, Naz E</creatorcontrib><title>Worst case fair beamforming for multiple multicast groups in multicell networks</title><title>IET communications</title><description>The design problem associated with robust downlink beamforming in multicast, multigroup, multicell wireless systems is addressed. The channel state information (CSI) of users is assumed to be imperfect and the uncertainty of CSI is modelled using the Frobenius norm. The objective is to optimise the signal-to-interference-plus-noise ratio over all users with a constraint on the maximum total transmitted power. This was achieved through a robust solution using the successive convex approximation (SCA) method. The beamforming problem is treated as a bi-convex problem, which is solved using the iterate-alternative convex technique. Here, the CSI uncertainty is addressed using a convex package through the non-monotone spectral projected gradient method and the beamforming vector is extracted using the SCA method. Also, the authors offer the required condition to extract the beamform vector using the SCA method through a suboptimal solution that always addressed before using different beamforming methods. Their simulation results examine all proposed system parameters in order to show convergence and feasibility of the solution. They also compare the solution with a suboptimal solution and the quality of service method for imperfect CSI in downlink beamforming. Numerical results show that the robust solution achieves the best power efficiency for practical solutions.</description><subject>approximation theory</subject><subject>array signal processing</subject><subject>beamforming methods</subject><subject>beamforming problem</subject><subject>beamforming vector</subject><subject>biconvex problem</subject><subject>cellular radio</subject><subject>channel state information</subject><subject>convex package</subject><subject>convex programming</subject><subject>CSI uncertainty</subject><subject>design problem</subject><subject>Frobenius norm</subject><subject>gradient methods</subject><subject>imperfect CSI</subject><subject>iterate‐alternative convex technique</subject><subject>maximum total transmitted power</subject><subject>multicast communication</subject><subject>multicell networks</subject><subject>multicell wireless system</subject><subject>multigroup wireless system</subject><subject>multiple multicast groups</subject><subject>nonmonotone spectral projected gradient method</subject><subject>quality of service</subject><subject>quality‐of‐service method</subject><subject>Research Article</subject><subject>robust downlink beamforming</subject><subject>SCA method</subject><subject>signal‐to‐interference‐plus‐noise ratio</subject><subject>successive convex approximation method</subject><subject>system parameters</subject><subject>vectors</subject><subject>wireless channels</subject><subject>worst case fair beamforming</subject><issn>1751-8628</issn><issn>1751-8636</issn><issn>1751-8636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQRi0EEqVwAHa-QIodxz9hBxUFpKJuqFhaqTOuXJK4slNVvT2OUrGE1XwazZvRPITuKZlRUpQPDvrM-HaWE6pmnCl2gSZUcpopwcTlb87VNbqJcUcI56IoJmj15UPssakiYFu5gDdQtdaH1nVbnCpuD03v9g2MIc31eBv8YR-x6849aBrcQX_04TveoitbNRHuznWK1ouXz_lbtly9vs-flplhrKAZSF6xDdh8o4SiqpZMWE7BllxZU9hClBaYpEaWzEgG1ua0NrUoa8OEtKJmU0THvSb4GANYvQ-urcJJU6IHIzoZ0cmIHozowUhiHkfm6Bo4_Q_o-cc6f14QWgqa4GyEh7GdP4QuvffHsR_Ki3jd</recordid><startdate>20190402</startdate><enddate>20190402</enddate><creator>Al-Asadi, Ahmed</creator><creator>Al-Amidie, Muthana</creator><creator>Micheas, Athanasios C</creator><creator>McGarvey, Ronald G</creator><creator>Islam, Naz E</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8825-8553</orcidid></search><sort><creationdate>20190402</creationdate><title>Worst case fair beamforming for multiple multicast groups in multicell networks</title><author>Al-Asadi, Ahmed ; Al-Amidie, Muthana ; Micheas, Athanasios C ; McGarvey, Ronald G ; Islam, Naz E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3341-e75a3bef2b86818d736f51ef958fc4f469fe371c793c73eff21dcd69dc367f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>approximation theory</topic><topic>array signal processing</topic><topic>beamforming methods</topic><topic>beamforming problem</topic><topic>beamforming vector</topic><topic>biconvex problem</topic><topic>cellular radio</topic><topic>channel state information</topic><topic>convex package</topic><topic>convex programming</topic><topic>CSI uncertainty</topic><topic>design problem</topic><topic>Frobenius norm</topic><topic>gradient methods</topic><topic>imperfect CSI</topic><topic>iterate‐alternative convex technique</topic><topic>maximum total transmitted power</topic><topic>multicast communication</topic><topic>multicell networks</topic><topic>multicell wireless system</topic><topic>multigroup wireless system</topic><topic>multiple multicast groups</topic><topic>nonmonotone spectral projected gradient method</topic><topic>quality of service</topic><topic>quality‐of‐service method</topic><topic>Research Article</topic><topic>robust downlink beamforming</topic><topic>SCA method</topic><topic>signal‐to‐interference‐plus‐noise ratio</topic><topic>successive convex approximation method</topic><topic>system parameters</topic><topic>vectors</topic><topic>wireless channels</topic><topic>worst case fair beamforming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Asadi, Ahmed</creatorcontrib><creatorcontrib>Al-Amidie, Muthana</creatorcontrib><creatorcontrib>Micheas, Athanasios C</creatorcontrib><creatorcontrib>McGarvey, Ronald G</creatorcontrib><creatorcontrib>Islam, Naz E</creatorcontrib><collection>CrossRef</collection><jtitle>IET communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al-Asadi, Ahmed</au><au>Al-Amidie, Muthana</au><au>Micheas, Athanasios C</au><au>McGarvey, Ronald G</au><au>Islam, Naz E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Worst case fair beamforming for multiple multicast groups in multicell networks</atitle><jtitle>IET communications</jtitle><date>2019-04-02</date><risdate>2019</risdate><volume>13</volume><issue>6</issue><spage>664</spage><epage>671</epage><pages>664-671</pages><issn>1751-8628</issn><issn>1751-8636</issn><eissn>1751-8636</eissn><abstract>The design problem associated with robust downlink beamforming in multicast, multigroup, multicell wireless systems is addressed. The channel state information (CSI) of users is assumed to be imperfect and the uncertainty of CSI is modelled using the Frobenius norm. The objective is to optimise the signal-to-interference-plus-noise ratio over all users with a constraint on the maximum total transmitted power. This was achieved through a robust solution using the successive convex approximation (SCA) method. The beamforming problem is treated as a bi-convex problem, which is solved using the iterate-alternative convex technique. Here, the CSI uncertainty is addressed using a convex package through the non-monotone spectral projected gradient method and the beamforming vector is extracted using the SCA method. Also, the authors offer the required condition to extract the beamform vector using the SCA method through a suboptimal solution that always addressed before using different beamforming methods. Their simulation results examine all proposed system parameters in order to show convergence and feasibility of the solution. They also compare the solution with a suboptimal solution and the quality of service method for imperfect CSI in downlink beamforming. Numerical results show that the robust solution achieves the best power efficiency for practical solutions.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-com.2018.5383</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8825-8553</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8628
ispartof IET communications, 2019-04, Vol.13 (6), p.664-671
issn 1751-8628
1751-8636
1751-8636
language eng
recordid cdi_crossref_primary_10_1049_iet_com_2018_5383
source Wiley-Blackwell Open Access Collection
subjects approximation theory
array signal processing
beamforming methods
beamforming problem
beamforming vector
biconvex problem
cellular radio
channel state information
convex package
convex programming
CSI uncertainty
design problem
Frobenius norm
gradient methods
imperfect CSI
iterate‐alternative convex technique
maximum total transmitted power
multicast communication
multicell networks
multicell wireless system
multigroup wireless system
multiple multicast groups
nonmonotone spectral projected gradient method
quality of service
quality‐of‐service method
Research Article
robust downlink beamforming
SCA method
signal‐to‐interference‐plus‐noise ratio
successive convex approximation method
system parameters
vectors
wireless channels
worst case fair beamforming
title Worst case fair beamforming for multiple multicast groups in multicell networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Worst%20case%20fair%20beamforming%20for%20multiple%20multicast%20groups%20in%20multicell%20networks&rft.jtitle=IET%20communications&rft.au=Al-Asadi,%20Ahmed&rft.date=2019-04-02&rft.volume=13&rft.issue=6&rft.spage=664&rft.epage=671&rft.pages=664-671&rft.issn=1751-8628&rft.eissn=1751-8636&rft_id=info:doi/10.1049/iet-com.2018.5383&rft_dat=%3Cwiley_24P%3ECMU2BF01961%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3341-e75a3bef2b86818d736f51ef958fc4f469fe371c793c73eff21dcd69dc367f6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true