Loading…
Particle filtering-based recursive identification for controlled auto-regressive systems with quantised output
Recursive prediction error method is one of the main tools for analysis of controlled auto-regressive systems with quantised output. In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm. To impr...
Saved in:
Published in: | IET control theory & applications 2019-09, Vol.13 (14), p.2181-2187 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recursive prediction error method is one of the main tools for analysis of controlled auto-regressive systems with quantised output. In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm. To improve the convergence performance of the algorithm, a particle filtering technique, which approximates the posterior probability density function with a weighted set of discrete random sampling points is utilised to correct the linear output estimates. It can exclude those invalid particles according to their corresponding weights. The performance of the particle filtering technique-based algorithm is much better than that of the auxiliary model-based one. Finally, results are verified by examples from simulation and engineering. |
---|---|
ISSN: | 1751-8644 1751-8652 1751-8652 |
DOI: | 10.1049/iet-cta.2019.0028 |