Loading…

Efficient fingerprint matching using GPU

Graphical processing unit (GPU) has proven a beneficial tool in handling computationally intensive algorithms, by introducing massive parallelism in the calculations. In this study, an effective and low-cost fingerprint identification (FI) solution is proposed that can exploit the parallel computati...

Full description

Saved in:
Bibliographic Details
Published in:IET image processing 2018-02, Vol.12 (2), p.274-284
Main Authors: Ghafoor, Mubeen, Iqbal, Shahzaib, Tariq, Syed Ali, Taj, Imtiaz A, Jafri, Noman M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3344-98fe26c8a914dcec462904704a442276030b78e1e89f6d77e30a961efd03fde53
cites cdi_FETCH-LOGICAL-c3344-98fe26c8a914dcec462904704a442276030b78e1e89f6d77e30a961efd03fde53
container_end_page 284
container_issue 2
container_start_page 274
container_title IET image processing
container_volume 12
creator Ghafoor, Mubeen
Iqbal, Shahzaib
Tariq, Syed Ali
Taj, Imtiaz A
Jafri, Noman M
description Graphical processing unit (GPU) has proven a beneficial tool in handling computationally intensive algorithms, by introducing massive parallelism in the calculations. In this study, an effective and low-cost fingerprint identification (FI) solution is proposed that can exploit the parallel computational power of GPU proficiently. It is achieved by mapping a generalised minutia neighbour-based novel encoding and matching algorithm on low-cost GPU technology. The proposed solution achieves high accuracy in comparison with two open source matchers and it is shown to be scalable by comparing matching performance on different GPUs. The proposed GPU implementation employs multithreading and loop unrolling, which minimises the use of nested loops and avoids sequential matching of encoded minutia features. After a thorough and careful designing of data structures, memory transfers and computations, a GPU-based fingerprint matching system is developed. It achieves on average 50,196 fingerprint matches per second on a single GPU. As compared to the sequential central processing unit implementation, the proposed system achieves a speed up of around 92 times, while maintaining the accuracy. The proposed system with matcher integrated on GPU can be considered as a good, low-cost, robust and efficient solution for large-scale applications of automated FI systems.
doi_str_mv 10.1049/iet-ipr.2016.1021
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_iet_ipr_2016_1021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>IPR2BF01714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-98fe26c8a914dcec462904704a442276030b78e1e89f6d77e30a961efd03fde53</originalsourceid><addsrcrecordid>eNqFj01PAjEQQBujiYj-AG8cvSzOdLvt1psSQBISiZFzs3anWgILaZcY_r3drPGol_nKvHYeY7cIYwSh7z21mT-EMQeUacLxjA1QFZhpKdX5b13oS3YV4wag0FAWA3Y3dc5bT007cr75oHAIPtW7qrWfqR8dYxfnq_U1u3DVNtLNTx6y9Wz6NnnOli_zxeRxmdk8FyLTpSMubVlpFLUlKyTXIBSISgjOlYQc3lVJSKV2slaKcqi0RHI15K6mIh8y7N-1YR9jIGfSRbsqnAyC6VRNUjVJ1XSqplNNzEPPfPktnf4HzGL1yp9mgApFgrMe7tY2-2Nokt4fn30DeLBoSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient fingerprint matching using GPU</title><source>Wiley Online Library</source><creator>Ghafoor, Mubeen ; Iqbal, Shahzaib ; Tariq, Syed Ali ; Taj, Imtiaz A ; Jafri, Noman M</creator><creatorcontrib>Ghafoor, Mubeen ; Iqbal, Shahzaib ; Tariq, Syed Ali ; Taj, Imtiaz A ; Jafri, Noman M</creatorcontrib><description>Graphical processing unit (GPU) has proven a beneficial tool in handling computationally intensive algorithms, by introducing massive parallelism in the calculations. In this study, an effective and low-cost fingerprint identification (FI) solution is proposed that can exploit the parallel computational power of GPU proficiently. It is achieved by mapping a generalised minutia neighbour-based novel encoding and matching algorithm on low-cost GPU technology. The proposed solution achieves high accuracy in comparison with two open source matchers and it is shown to be scalable by comparing matching performance on different GPUs. The proposed GPU implementation employs multithreading and loop unrolling, which minimises the use of nested loops and avoids sequential matching of encoded minutia features. After a thorough and careful designing of data structures, memory transfers and computations, a GPU-based fingerprint matching system is developed. It achieves on average 50,196 fingerprint matches per second on a single GPU. As compared to the sequential central processing unit implementation, the proposed system achieves a speed up of around 92 times, while maintaining the accuracy. The proposed system with matcher integrated on GPU can be considered as a good, low-cost, robust and efficient solution for large-scale applications of automated FI systems.</description><identifier>ISSN: 1751-9659</identifier><identifier>ISSN: 1751-9667</identifier><identifier>EISSN: 1751-9667</identifier><identifier>DOI: 10.1049/iet-ipr.2016.1021</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>automated FI system ; computationally intensive algorithms ; data structures ; fingerprint identification ; fingerprint matching algorithm ; GPU technology ; graphical processing unit ; graphics processing units ; image coding ; image matching ; image sequences ; loop unrolling ; minutia neighbour‐based novel encoding algorithm ; multithreading ; multi‐threading ; nested loop minimisation ; open source matcher ; parallel computational power ; Research Article ; sequential central processing</subject><ispartof>IET image processing, 2018-02, Vol.12 (2), p.274-284</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Authors. IET Image Processing published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-98fe26c8a914dcec462904704a442276030b78e1e89f6d77e30a961efd03fde53</citedby><cites>FETCH-LOGICAL-c3344-98fe26c8a914dcec462904704a442276030b78e1e89f6d77e30a961efd03fde53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-ipr.2016.1021$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-ipr.2016.1021$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,9736,11541,27901,27902,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2016.1021$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Ghafoor, Mubeen</creatorcontrib><creatorcontrib>Iqbal, Shahzaib</creatorcontrib><creatorcontrib>Tariq, Syed Ali</creatorcontrib><creatorcontrib>Taj, Imtiaz A</creatorcontrib><creatorcontrib>Jafri, Noman M</creatorcontrib><title>Efficient fingerprint matching using GPU</title><title>IET image processing</title><description>Graphical processing unit (GPU) has proven a beneficial tool in handling computationally intensive algorithms, by introducing massive parallelism in the calculations. In this study, an effective and low-cost fingerprint identification (FI) solution is proposed that can exploit the parallel computational power of GPU proficiently. It is achieved by mapping a generalised minutia neighbour-based novel encoding and matching algorithm on low-cost GPU technology. The proposed solution achieves high accuracy in comparison with two open source matchers and it is shown to be scalable by comparing matching performance on different GPUs. The proposed GPU implementation employs multithreading and loop unrolling, which minimises the use of nested loops and avoids sequential matching of encoded minutia features. After a thorough and careful designing of data structures, memory transfers and computations, a GPU-based fingerprint matching system is developed. It achieves on average 50,196 fingerprint matches per second on a single GPU. As compared to the sequential central processing unit implementation, the proposed system achieves a speed up of around 92 times, while maintaining the accuracy. The proposed system with matcher integrated on GPU can be considered as a good, low-cost, robust and efficient solution for large-scale applications of automated FI systems.</description><subject>automated FI system</subject><subject>computationally intensive algorithms</subject><subject>data structures</subject><subject>fingerprint identification</subject><subject>fingerprint matching algorithm</subject><subject>GPU technology</subject><subject>graphical processing unit</subject><subject>graphics processing units</subject><subject>image coding</subject><subject>image matching</subject><subject>image sequences</subject><subject>loop unrolling</subject><subject>minutia neighbour‐based novel encoding algorithm</subject><subject>multithreading</subject><subject>multi‐threading</subject><subject>nested loop minimisation</subject><subject>open source matcher</subject><subject>parallel computational power</subject><subject>Research Article</subject><subject>sequential central processing</subject><issn>1751-9659</issn><issn>1751-9667</issn><issn>1751-9667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFj01PAjEQQBujiYj-AG8cvSzOdLvt1psSQBISiZFzs3anWgILaZcY_r3drPGol_nKvHYeY7cIYwSh7z21mT-EMQeUacLxjA1QFZhpKdX5b13oS3YV4wag0FAWA3Y3dc5bT007cr75oHAIPtW7qrWfqR8dYxfnq_U1u3DVNtLNTx6y9Wz6NnnOli_zxeRxmdk8FyLTpSMubVlpFLUlKyTXIBSISgjOlYQc3lVJSKV2slaKcqi0RHI15K6mIh8y7N-1YR9jIGfSRbsqnAyC6VRNUjVJ1XSqplNNzEPPfPktnf4HzGL1yp9mgApFgrMe7tY2-2Nokt4fn30DeLBoSA</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Ghafoor, Mubeen</creator><creator>Iqbal, Shahzaib</creator><creator>Tariq, Syed Ali</creator><creator>Taj, Imtiaz A</creator><creator>Jafri, Noman M</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201802</creationdate><title>Efficient fingerprint matching using GPU</title><author>Ghafoor, Mubeen ; Iqbal, Shahzaib ; Tariq, Syed Ali ; Taj, Imtiaz A ; Jafri, Noman M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-98fe26c8a914dcec462904704a442276030b78e1e89f6d77e30a961efd03fde53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>automated FI system</topic><topic>computationally intensive algorithms</topic><topic>data structures</topic><topic>fingerprint identification</topic><topic>fingerprint matching algorithm</topic><topic>GPU technology</topic><topic>graphical processing unit</topic><topic>graphics processing units</topic><topic>image coding</topic><topic>image matching</topic><topic>image sequences</topic><topic>loop unrolling</topic><topic>minutia neighbour‐based novel encoding algorithm</topic><topic>multithreading</topic><topic>multi‐threading</topic><topic>nested loop minimisation</topic><topic>open source matcher</topic><topic>parallel computational power</topic><topic>Research Article</topic><topic>sequential central processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghafoor, Mubeen</creatorcontrib><creatorcontrib>Iqbal, Shahzaib</creatorcontrib><creatorcontrib>Tariq, Syed Ali</creatorcontrib><creatorcontrib>Taj, Imtiaz A</creatorcontrib><creatorcontrib>Jafri, Noman M</creatorcontrib><collection>CrossRef</collection><jtitle>IET image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghafoor, Mubeen</au><au>Iqbal, Shahzaib</au><au>Tariq, Syed Ali</au><au>Taj, Imtiaz A</au><au>Jafri, Noman M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient fingerprint matching using GPU</atitle><jtitle>IET image processing</jtitle><date>2018-02</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>274</spage><epage>284</epage><pages>274-284</pages><issn>1751-9659</issn><issn>1751-9667</issn><eissn>1751-9667</eissn><abstract>Graphical processing unit (GPU) has proven a beneficial tool in handling computationally intensive algorithms, by introducing massive parallelism in the calculations. In this study, an effective and low-cost fingerprint identification (FI) solution is proposed that can exploit the parallel computational power of GPU proficiently. It is achieved by mapping a generalised minutia neighbour-based novel encoding and matching algorithm on low-cost GPU technology. The proposed solution achieves high accuracy in comparison with two open source matchers and it is shown to be scalable by comparing matching performance on different GPUs. The proposed GPU implementation employs multithreading and loop unrolling, which minimises the use of nested loops and avoids sequential matching of encoded minutia features. After a thorough and careful designing of data structures, memory transfers and computations, a GPU-based fingerprint matching system is developed. It achieves on average 50,196 fingerprint matches per second on a single GPU. As compared to the sequential central processing unit implementation, the proposed system achieves a speed up of around 92 times, while maintaining the accuracy. The proposed system with matcher integrated on GPU can be considered as a good, low-cost, robust and efficient solution for large-scale applications of automated FI systems.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-ipr.2016.1021</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-9659
ispartof IET image processing, 2018-02, Vol.12 (2), p.274-284
issn 1751-9659
1751-9667
1751-9667
language eng
recordid cdi_crossref_primary_10_1049_iet_ipr_2016_1021
source Wiley Online Library
subjects automated FI system
computationally intensive algorithms
data structures
fingerprint identification
fingerprint matching algorithm
GPU technology
graphical processing unit
graphics processing units
image coding
image matching
image sequences
loop unrolling
minutia neighbour‐based novel encoding algorithm
multithreading
multi‐threading
nested loop minimisation
open source matcher
parallel computational power
Research Article
sequential central processing
title Efficient fingerprint matching using GPU
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20fingerprint%20matching%20using%20GPU&rft.jtitle=IET%20image%20processing&rft.au=Ghafoor,%20Mubeen&rft.date=2018-02&rft.volume=12&rft.issue=2&rft.spage=274&rft.epage=284&rft.pages=274-284&rft.issn=1751-9659&rft.eissn=1751-9667&rft_id=info:doi/10.1049/iet-ipr.2016.1021&rft_dat=%3Cwiley_24P%3EIPR2BF01714%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3344-98fe26c8a914dcec462904704a442276030b78e1e89f6d77e30a961efd03fde53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true