Loading…

Advances in human action recognition: an updated survey

Research in human activity recognition (HAR) has seen tremendous growth and continuously receiving attention from both the Computer Vision and the Image Processing communities. Due to the existence of numerous publications in this field, undoubtedly, there have been a number of review papers on this...

Full description

Saved in:
Bibliographic Details
Published in:IET image processing 2019-11, Vol.13 (13), p.2381-2394
Main Author: Abu-Bakar, Syed A.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033
cites cdi_FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033
container_end_page 2394
container_issue 13
container_start_page 2381
container_title IET image processing
container_volume 13
creator Abu-Bakar, Syed A.R
description Research in human activity recognition (HAR) has seen tremendous growth and continuously receiving attention from both the Computer Vision and the Image Processing communities. Due to the existence of numerous publications in this field, undoubtedly, there have been a number of review papers on this subject that categorise these techniques. Many of the recent works have started to tackle more challenging problems and these proposed techniques are addressing more realistic real-world scenarios. Conspicuously, an updated survey that covers these methods is timely due. To simplify the categorisation, this study takes a two-layer hierarchical approach. At the top level, the categorisation is based on the basic process flow of HAR, i.e. input data-type, features-type, descriptor-type, and classifier-type. At the second layer, each of these components is further subcategorised based on the diversity of the proposed methods. Finally, a remark on the coming popularity of deep learning approach in this field is also given.
doi_str_mv 10.1049/iet-ipr.2019.0350
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_iet_ipr_2019_0350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>IPR2BF01989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033</originalsourceid><addsrcrecordid>eNqFj8tKAzEUhoMoWKsP4G62LqbmzOQy6a4Wq4WCInUd0lw0pZ0Zkk6lb2-GirhQXJ0L_3c4H0LXgEeAibj1dpf7NowKDGKES4pP0AA4hVwwxk-_eyrO0UWMa4ypwBUdID4xe1VrGzNfZ-_dVtWZ0jvf1Fmwunmrfd-Ps7TuWqN21mSxC3t7uERnTm2ivfqqQ_Q6u19OH_PF08N8OlnkmgCIvHArxUvMCGHEGlgxQUTBiQbFiFGV45QagBKwqhh3aesqJ1xZUeq4BlyWQwTHuzo0MQbrZBv8VoWDBCx7c5nMZTKXvbnszRMzPjIffmMP_wNy_vxS3M3SWIkE3xzhPrZuulAnPTm_X_apH0xrXMrmv2T_fuwT_Y57PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advances in human action recognition: an updated survey</title><source>Wiley Online Library Open Access</source><creator>Abu-Bakar, Syed A.R</creator><creatorcontrib>Abu-Bakar, Syed A.R</creatorcontrib><description>Research in human activity recognition (HAR) has seen tremendous growth and continuously receiving attention from both the Computer Vision and the Image Processing communities. Due to the existence of numerous publications in this field, undoubtedly, there have been a number of review papers on this subject that categorise these techniques. Many of the recent works have started to tackle more challenging problems and these proposed techniques are addressing more realistic real-world scenarios. Conspicuously, an updated survey that covers these methods is timely due. To simplify the categorisation, this study takes a two-layer hierarchical approach. At the top level, the categorisation is based on the basic process flow of HAR, i.e. input data-type, features-type, descriptor-type, and classifier-type. At the second layer, each of these components is further subcategorised based on the diversity of the proposed methods. Finally, a remark on the coming popularity of deep learning approach in this field is also given.</description><identifier>ISSN: 1751-9659</identifier><identifier>EISSN: 1751-9667</identifier><identifier>DOI: 10.1049/iet-ipr.2019.0350</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>basic process flow ; categorisation ; categorise ; classifier‐type ; computer vision ; descriptor‐type ; feature extraction ; features‐type ; HAR ; human action recognition ; human activity recognition ; image motion analysis ; Image Processing communities ; image recognition ; input data‐type ; learning (artificial intelligence) ; numerous publications ; Review Article ; review papers ; two‐layer hierarchical approach ; updated survey</subject><ispartof>IET image processing, 2019-11, Vol.13 (13), p.2381-2394</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Authors. IET Image Processing published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033</citedby><cites>FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-ipr.2019.0350$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-ipr.2019.0350$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2019.0350$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Abu-Bakar, Syed A.R</creatorcontrib><title>Advances in human action recognition: an updated survey</title><title>IET image processing</title><description>Research in human activity recognition (HAR) has seen tremendous growth and continuously receiving attention from both the Computer Vision and the Image Processing communities. Due to the existence of numerous publications in this field, undoubtedly, there have been a number of review papers on this subject that categorise these techniques. Many of the recent works have started to tackle more challenging problems and these proposed techniques are addressing more realistic real-world scenarios. Conspicuously, an updated survey that covers these methods is timely due. To simplify the categorisation, this study takes a two-layer hierarchical approach. At the top level, the categorisation is based on the basic process flow of HAR, i.e. input data-type, features-type, descriptor-type, and classifier-type. At the second layer, each of these components is further subcategorised based on the diversity of the proposed methods. Finally, a remark on the coming popularity of deep learning approach in this field is also given.</description><subject>basic process flow</subject><subject>categorisation</subject><subject>categorise</subject><subject>classifier‐type</subject><subject>computer vision</subject><subject>descriptor‐type</subject><subject>feature extraction</subject><subject>features‐type</subject><subject>HAR</subject><subject>human action recognition</subject><subject>human activity recognition</subject><subject>image motion analysis</subject><subject>Image Processing communities</subject><subject>image recognition</subject><subject>input data‐type</subject><subject>learning (artificial intelligence)</subject><subject>numerous publications</subject><subject>Review Article</subject><subject>review papers</subject><subject>two‐layer hierarchical approach</subject><subject>updated survey</subject><issn>1751-9659</issn><issn>1751-9667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFj8tKAzEUhoMoWKsP4G62LqbmzOQy6a4Wq4WCInUd0lw0pZ0Zkk6lb2-GirhQXJ0L_3c4H0LXgEeAibj1dpf7NowKDGKES4pP0AA4hVwwxk-_eyrO0UWMa4ypwBUdID4xe1VrGzNfZ-_dVtWZ0jvf1Fmwunmrfd-Ps7TuWqN21mSxC3t7uERnTm2ivfqqQ_Q6u19OH_PF08N8OlnkmgCIvHArxUvMCGHEGlgxQUTBiQbFiFGV45QagBKwqhh3aesqJ1xZUeq4BlyWQwTHuzo0MQbrZBv8VoWDBCx7c5nMZTKXvbnszRMzPjIffmMP_wNy_vxS3M3SWIkE3xzhPrZuulAnPTm_X_apH0xrXMrmv2T_fuwT_Y57PA</recordid><startdate>20191114</startdate><enddate>20191114</enddate><creator>Abu-Bakar, Syed A.R</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191114</creationdate><title>Advances in human action recognition: an updated survey</title><author>Abu-Bakar, Syed A.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>basic process flow</topic><topic>categorisation</topic><topic>categorise</topic><topic>classifier‐type</topic><topic>computer vision</topic><topic>descriptor‐type</topic><topic>feature extraction</topic><topic>features‐type</topic><topic>HAR</topic><topic>human action recognition</topic><topic>human activity recognition</topic><topic>image motion analysis</topic><topic>Image Processing communities</topic><topic>image recognition</topic><topic>input data‐type</topic><topic>learning (artificial intelligence)</topic><topic>numerous publications</topic><topic>Review Article</topic><topic>review papers</topic><topic>two‐layer hierarchical approach</topic><topic>updated survey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu-Bakar, Syed A.R</creatorcontrib><collection>CrossRef</collection><jtitle>IET image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abu-Bakar, Syed A.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in human action recognition: an updated survey</atitle><jtitle>IET image processing</jtitle><date>2019-11-14</date><risdate>2019</risdate><volume>13</volume><issue>13</issue><spage>2381</spage><epage>2394</epage><pages>2381-2394</pages><issn>1751-9659</issn><eissn>1751-9667</eissn><abstract>Research in human activity recognition (HAR) has seen tremendous growth and continuously receiving attention from both the Computer Vision and the Image Processing communities. Due to the existence of numerous publications in this field, undoubtedly, there have been a number of review papers on this subject that categorise these techniques. Many of the recent works have started to tackle more challenging problems and these proposed techniques are addressing more realistic real-world scenarios. Conspicuously, an updated survey that covers these methods is timely due. To simplify the categorisation, this study takes a two-layer hierarchical approach. At the top level, the categorisation is based on the basic process flow of HAR, i.e. input data-type, features-type, descriptor-type, and classifier-type. At the second layer, each of these components is further subcategorised based on the diversity of the proposed methods. Finally, a remark on the coming popularity of deep learning approach in this field is also given.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-ipr.2019.0350</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-9659
ispartof IET image processing, 2019-11, Vol.13 (13), p.2381-2394
issn 1751-9659
1751-9667
language eng
recordid cdi_crossref_primary_10_1049_iet_ipr_2019_0350
source Wiley Online Library Open Access
subjects basic process flow
categorisation
categorise
classifier‐type
computer vision
descriptor‐type
feature extraction
features‐type
HAR
human action recognition
human activity recognition
image motion analysis
Image Processing communities
image recognition
input data‐type
learning (artificial intelligence)
numerous publications
Review Article
review papers
two‐layer hierarchical approach
updated survey
title Advances in human action recognition: an updated survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20human%20action%20recognition:%20an%20updated%20survey&rft.jtitle=IET%20image%20processing&rft.au=Abu-Bakar,%20Syed%20A.R&rft.date=2019-11-14&rft.volume=13&rft.issue=13&rft.spage=2381&rft.epage=2394&rft.pages=2381-2394&rft.issn=1751-9659&rft.eissn=1751-9667&rft_id=info:doi/10.1049/iet-ipr.2019.0350&rft_dat=%3Cwiley_24P%3EIPR2BF01989%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true