Loading…
Advances in human action recognition: an updated survey
Research in human activity recognition (HAR) has seen tremendous growth and continuously receiving attention from both the Computer Vision and the Image Processing communities. Due to the existence of numerous publications in this field, undoubtedly, there have been a number of review papers on this...
Saved in:
Published in: | IET image processing 2019-11, Vol.13 (13), p.2381-2394 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033 |
---|---|
cites | cdi_FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033 |
container_end_page | 2394 |
container_issue | 13 |
container_start_page | 2381 |
container_title | IET image processing |
container_volume | 13 |
creator | Abu-Bakar, Syed A.R |
description | Research in human activity recognition (HAR) has seen tremendous growth and continuously receiving attention from both the Computer Vision and the Image Processing communities. Due to the existence of numerous publications in this field, undoubtedly, there have been a number of review papers on this subject that categorise these techniques. Many of the recent works have started to tackle more challenging problems and these proposed techniques are addressing more realistic real-world scenarios. Conspicuously, an updated survey that covers these methods is timely due. To simplify the categorisation, this study takes a two-layer hierarchical approach. At the top level, the categorisation is based on the basic process flow of HAR, i.e. input data-type, features-type, descriptor-type, and classifier-type. At the second layer, each of these components is further subcategorised based on the diversity of the proposed methods. Finally, a remark on the coming popularity of deep learning approach in this field is also given. |
doi_str_mv | 10.1049/iet-ipr.2019.0350 |
format | article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_iet_ipr_2019_0350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>IPR2BF01989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033</originalsourceid><addsrcrecordid>eNqFj8tKAzEUhoMoWKsP4G62LqbmzOQy6a4Wq4WCInUd0lw0pZ0Zkk6lb2-GirhQXJ0L_3c4H0LXgEeAibj1dpf7NowKDGKES4pP0AA4hVwwxk-_eyrO0UWMa4ypwBUdID4xe1VrGzNfZ-_dVtWZ0jvf1Fmwunmrfd-Ps7TuWqN21mSxC3t7uERnTm2ivfqqQ_Q6u19OH_PF08N8OlnkmgCIvHArxUvMCGHEGlgxQUTBiQbFiFGV45QagBKwqhh3aesqJ1xZUeq4BlyWQwTHuzo0MQbrZBv8VoWDBCx7c5nMZTKXvbnszRMzPjIffmMP_wNy_vxS3M3SWIkE3xzhPrZuulAnPTm_X_apH0xrXMrmv2T_fuwT_Y57PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advances in human action recognition: an updated survey</title><source>Wiley Online Library Open Access</source><creator>Abu-Bakar, Syed A.R</creator><creatorcontrib>Abu-Bakar, Syed A.R</creatorcontrib><description>Research in human activity recognition (HAR) has seen tremendous growth and continuously receiving attention from both the Computer Vision and the Image Processing communities. Due to the existence of numerous publications in this field, undoubtedly, there have been a number of review papers on this subject that categorise these techniques. Many of the recent works have started to tackle more challenging problems and these proposed techniques are addressing more realistic real-world scenarios. Conspicuously, an updated survey that covers these methods is timely due. To simplify the categorisation, this study takes a two-layer hierarchical approach. At the top level, the categorisation is based on the basic process flow of HAR, i.e. input data-type, features-type, descriptor-type, and classifier-type. At the second layer, each of these components is further subcategorised based on the diversity of the proposed methods. Finally, a remark on the coming popularity of deep learning approach in this field is also given.</description><identifier>ISSN: 1751-9659</identifier><identifier>EISSN: 1751-9667</identifier><identifier>DOI: 10.1049/iet-ipr.2019.0350</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>basic process flow ; categorisation ; categorise ; classifier‐type ; computer vision ; descriptor‐type ; feature extraction ; features‐type ; HAR ; human action recognition ; human activity recognition ; image motion analysis ; Image Processing communities ; image recognition ; input data‐type ; learning (artificial intelligence) ; numerous publications ; Review Article ; review papers ; two‐layer hierarchical approach ; updated survey</subject><ispartof>IET image processing, 2019-11, Vol.13 (13), p.2381-2394</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033</citedby><cites>FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-ipr.2019.0350$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-ipr.2019.0350$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2019.0350$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Abu-Bakar, Syed A.R</creatorcontrib><title>Advances in human action recognition: an updated survey</title><title>IET image processing</title><description>Research in human activity recognition (HAR) has seen tremendous growth and continuously receiving attention from both the Computer Vision and the Image Processing communities. Due to the existence of numerous publications in this field, undoubtedly, there have been a number of review papers on this subject that categorise these techniques. Many of the recent works have started to tackle more challenging problems and these proposed techniques are addressing more realistic real-world scenarios. Conspicuously, an updated survey that covers these methods is timely due. To simplify the categorisation, this study takes a two-layer hierarchical approach. At the top level, the categorisation is based on the basic process flow of HAR, i.e. input data-type, features-type, descriptor-type, and classifier-type. At the second layer, each of these components is further subcategorised based on the diversity of the proposed methods. Finally, a remark on the coming popularity of deep learning approach in this field is also given.</description><subject>basic process flow</subject><subject>categorisation</subject><subject>categorise</subject><subject>classifier‐type</subject><subject>computer vision</subject><subject>descriptor‐type</subject><subject>feature extraction</subject><subject>features‐type</subject><subject>HAR</subject><subject>human action recognition</subject><subject>human activity recognition</subject><subject>image motion analysis</subject><subject>Image Processing communities</subject><subject>image recognition</subject><subject>input data‐type</subject><subject>learning (artificial intelligence)</subject><subject>numerous publications</subject><subject>Review Article</subject><subject>review papers</subject><subject>two‐layer hierarchical approach</subject><subject>updated survey</subject><issn>1751-9659</issn><issn>1751-9667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFj8tKAzEUhoMoWKsP4G62LqbmzOQy6a4Wq4WCInUd0lw0pZ0Zkk6lb2-GirhQXJ0L_3c4H0LXgEeAibj1dpf7NowKDGKES4pP0AA4hVwwxk-_eyrO0UWMa4ypwBUdID4xe1VrGzNfZ-_dVtWZ0jvf1Fmwunmrfd-Ps7TuWqN21mSxC3t7uERnTm2ivfqqQ_Q6u19OH_PF08N8OlnkmgCIvHArxUvMCGHEGlgxQUTBiQbFiFGV45QagBKwqhh3aesqJ1xZUeq4BlyWQwTHuzo0MQbrZBv8VoWDBCx7c5nMZTKXvbnszRMzPjIffmMP_wNy_vxS3M3SWIkE3xzhPrZuulAnPTm_X_apH0xrXMrmv2T_fuwT_Y57PA</recordid><startdate>20191114</startdate><enddate>20191114</enddate><creator>Abu-Bakar, Syed A.R</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191114</creationdate><title>Advances in human action recognition: an updated survey</title><author>Abu-Bakar, Syed A.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>basic process flow</topic><topic>categorisation</topic><topic>categorise</topic><topic>classifier‐type</topic><topic>computer vision</topic><topic>descriptor‐type</topic><topic>feature extraction</topic><topic>features‐type</topic><topic>HAR</topic><topic>human action recognition</topic><topic>human activity recognition</topic><topic>image motion analysis</topic><topic>Image Processing communities</topic><topic>image recognition</topic><topic>input data‐type</topic><topic>learning (artificial intelligence)</topic><topic>numerous publications</topic><topic>Review Article</topic><topic>review papers</topic><topic>two‐layer hierarchical approach</topic><topic>updated survey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu-Bakar, Syed A.R</creatorcontrib><collection>CrossRef</collection><jtitle>IET image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abu-Bakar, Syed A.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in human action recognition: an updated survey</atitle><jtitle>IET image processing</jtitle><date>2019-11-14</date><risdate>2019</risdate><volume>13</volume><issue>13</issue><spage>2381</spage><epage>2394</epage><pages>2381-2394</pages><issn>1751-9659</issn><eissn>1751-9667</eissn><abstract>Research in human activity recognition (HAR) has seen tremendous growth and continuously receiving attention from both the Computer Vision and the Image Processing communities. Due to the existence of numerous publications in this field, undoubtedly, there have been a number of review papers on this subject that categorise these techniques. Many of the recent works have started to tackle more challenging problems and these proposed techniques are addressing more realistic real-world scenarios. Conspicuously, an updated survey that covers these methods is timely due. To simplify the categorisation, this study takes a two-layer hierarchical approach. At the top level, the categorisation is based on the basic process flow of HAR, i.e. input data-type, features-type, descriptor-type, and classifier-type. At the second layer, each of these components is further subcategorised based on the diversity of the proposed methods. Finally, a remark on the coming popularity of deep learning approach in this field is also given.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-ipr.2019.0350</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-9659 |
ispartof | IET image processing, 2019-11, Vol.13 (13), p.2381-2394 |
issn | 1751-9659 1751-9667 |
language | eng |
recordid | cdi_crossref_primary_10_1049_iet_ipr_2019_0350 |
source | Wiley Online Library Open Access |
subjects | basic process flow categorisation categorise classifier‐type computer vision descriptor‐type feature extraction features‐type HAR human action recognition human activity recognition image motion analysis Image Processing communities image recognition input data‐type learning (artificial intelligence) numerous publications Review Article review papers two‐layer hierarchical approach updated survey |
title | Advances in human action recognition: an updated survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20human%20action%20recognition:%20an%20updated%20survey&rft.jtitle=IET%20image%20processing&rft.au=Abu-Bakar,%20Syed%20A.R&rft.date=2019-11-14&rft.volume=13&rft.issue=13&rft.spage=2381&rft.epage=2394&rft.pages=2381-2394&rft.issn=1751-9659&rft.eissn=1751-9667&rft_id=info:doi/10.1049/iet-ipr.2019.0350&rft_dat=%3Cwiley_24P%3EIPR2BF01989%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4119-2fba73064464ed1b6949274c1a64da8f755d11310a867f1a6f8f9f3855f7c1033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |