Loading…

Analysis of partial diffusion recursive least squares adaptation over noisy links

Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iter...

Full description

Saved in:
Bibliographic Details
Published in:IET signal processing 2017-08, Vol.11 (6), p.749-757
Main Authors: Vahidpour, Vahid, Rastegarnia, Amir, Khalili, Azam, Sanei, Saeid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3
cites cdi_FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3
container_end_page 757
container_issue 6
container_start_page 749
container_title IET signal processing
container_volume 11
creator Vahidpour, Vahid
Rastegarnia, Amir
Khalili, Azam
Sanei, Saeid
description Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iteration. In this study, the authors examine the steady-state performance of PDRLS algorithm in the presence of noisy links by means of an energy conservation argument. They consider the mean-square-deviation (MSD) as the performance metric in the steady-state and derive a theoretical expression for PDRLS algorithm with noisy links. The authors’ analysis reveals that unlike the established statements on PDRLS scheme under ideal links, the trade-off between MSD performance and the number of selected entries of the intermediate estimate vectors, as a sign of communication cost, is mitigated. They further examine the convergence behaviour of the PDRLS algorithm. The obtained results show that under certain statistical assumptions for the measurement data and noise signals, under noisy links the PDRLS algorithm is stable in both mean and mean-square senses. Finally, they present some simulation results to verify the theoretical findings.
doi_str_mv 10.1049/iet-spr.2016.0544
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_iet_spr_2016_0544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SIL2BF00507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwAez8Ayl2YscJu1JRqBQJIWBtuX5ILiEJnqQof4-jIJawmlncc0dzELqmZEUJK2-87RPowiolNF8RztgJWlDBaVLmRXb6uwt-ji4ADoTwnNN0gZ7XjapH8IBbhzsVeq9qbLxzA_i2wcHqIYA_WlxbBT2Gz0EFC1gZ1fWqnyLt0QbctB5GXPvmHS7RmVM12KufuURv2_vXzWNSPT3sNusq0VnGRKKISSlnRhCqSidsoS0vjM7E3lBiirykutCapdZkzHFqrNLxN8dztyf53phsiejcq0MLEKyTXfAfKoySEjk5kdGJjE7k5EROTiJzOzNfvrbj_4B82VXp3TbaIiLCyQxPsUM7hGgO_jj2DTnYegI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of partial diffusion recursive least squares adaptation over noisy links</title><source>Wiley Open Access Journals</source><creator>Vahidpour, Vahid ; Rastegarnia, Amir ; Khalili, Azam ; Sanei, Saeid</creator><creatorcontrib>Vahidpour, Vahid ; Rastegarnia, Amir ; Khalili, Azam ; Sanei, Saeid</creatorcontrib><description>Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iteration. In this study, the authors examine the steady-state performance of PDRLS algorithm in the presence of noisy links by means of an energy conservation argument. They consider the mean-square-deviation (MSD) as the performance metric in the steady-state and derive a theoretical expression for PDRLS algorithm with noisy links. The authors’ analysis reveals that unlike the established statements on PDRLS scheme under ideal links, the trade-off between MSD performance and the number of selected entries of the intermediate estimate vectors, as a sign of communication cost, is mitigated. They further examine the convergence behaviour of the PDRLS algorithm. The obtained results show that under certain statistical assumptions for the measurement data and noise signals, under noisy links the PDRLS algorithm is stable in both mean and mean-square senses. Finally, they present some simulation results to verify the theoretical findings.</description><identifier>ISSN: 1751-9675</identifier><identifier>ISSN: 1751-9683</identifier><identifier>EISSN: 1751-9683</identifier><identifier>DOI: 10.1049/iet-spr.2016.0544</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>adaptive network implementation ; energy conservation argument ; intermediate vector estimate ; least squares approximations ; mean‐square‐deviation ; MSD ; noisy links ; partial diffusion‐based recursive least squares ; PDRLS ; power consumption ; radio links ; Research Article ; statistical assumptions ; telecommunication power management</subject><ispartof>IET signal processing, 2017-08, Vol.11 (6), p.749-757</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3</citedby><cites>FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-spr.2016.0544$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-spr.2016.0544$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11542,27903,27904,46030,46454</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2016.0544$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Vahidpour, Vahid</creatorcontrib><creatorcontrib>Rastegarnia, Amir</creatorcontrib><creatorcontrib>Khalili, Azam</creatorcontrib><creatorcontrib>Sanei, Saeid</creatorcontrib><title>Analysis of partial diffusion recursive least squares adaptation over noisy links</title><title>IET signal processing</title><description>Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iteration. In this study, the authors examine the steady-state performance of PDRLS algorithm in the presence of noisy links by means of an energy conservation argument. They consider the mean-square-deviation (MSD) as the performance metric in the steady-state and derive a theoretical expression for PDRLS algorithm with noisy links. The authors’ analysis reveals that unlike the established statements on PDRLS scheme under ideal links, the trade-off between MSD performance and the number of selected entries of the intermediate estimate vectors, as a sign of communication cost, is mitigated. They further examine the convergence behaviour of the PDRLS algorithm. The obtained results show that under certain statistical assumptions for the measurement data and noise signals, under noisy links the PDRLS algorithm is stable in both mean and mean-square senses. Finally, they present some simulation results to verify the theoretical findings.</description><subject>adaptive network implementation</subject><subject>energy conservation argument</subject><subject>intermediate vector estimate</subject><subject>least squares approximations</subject><subject>mean‐square‐deviation</subject><subject>MSD</subject><subject>noisy links</subject><subject>partial diffusion‐based recursive least squares</subject><subject>PDRLS</subject><subject>power consumption</subject><subject>radio links</subject><subject>Research Article</subject><subject>statistical assumptions</subject><subject>telecommunication power management</subject><issn>1751-9675</issn><issn>1751-9683</issn><issn>1751-9683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwAez8Ayl2YscJu1JRqBQJIWBtuX5ILiEJnqQof4-jIJawmlncc0dzELqmZEUJK2-87RPowiolNF8RztgJWlDBaVLmRXb6uwt-ji4ADoTwnNN0gZ7XjapH8IBbhzsVeq9qbLxzA_i2wcHqIYA_WlxbBT2Gz0EFC1gZ1fWqnyLt0QbctB5GXPvmHS7RmVM12KufuURv2_vXzWNSPT3sNusq0VnGRKKISSlnRhCqSidsoS0vjM7E3lBiirykutCapdZkzHFqrNLxN8dztyf53phsiejcq0MLEKyTXfAfKoySEjk5kdGJjE7k5EROTiJzOzNfvrbj_4B82VXp3TbaIiLCyQxPsUM7hGgO_jj2DTnYegI</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Vahidpour, Vahid</creator><creator>Rastegarnia, Amir</creator><creator>Khalili, Azam</creator><creator>Sanei, Saeid</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201708</creationdate><title>Analysis of partial diffusion recursive least squares adaptation over noisy links</title><author>Vahidpour, Vahid ; Rastegarnia, Amir ; Khalili, Azam ; Sanei, Saeid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>adaptive network implementation</topic><topic>energy conservation argument</topic><topic>intermediate vector estimate</topic><topic>least squares approximations</topic><topic>mean‐square‐deviation</topic><topic>MSD</topic><topic>noisy links</topic><topic>partial diffusion‐based recursive least squares</topic><topic>PDRLS</topic><topic>power consumption</topic><topic>radio links</topic><topic>Research Article</topic><topic>statistical assumptions</topic><topic>telecommunication power management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vahidpour, Vahid</creatorcontrib><creatorcontrib>Rastegarnia, Amir</creatorcontrib><creatorcontrib>Khalili, Azam</creatorcontrib><creatorcontrib>Sanei, Saeid</creatorcontrib><collection>CrossRef</collection><jtitle>IET signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vahidpour, Vahid</au><au>Rastegarnia, Amir</au><au>Khalili, Azam</au><au>Sanei, Saeid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of partial diffusion recursive least squares adaptation over noisy links</atitle><jtitle>IET signal processing</jtitle><date>2017-08</date><risdate>2017</risdate><volume>11</volume><issue>6</issue><spage>749</spage><epage>757</epage><pages>749-757</pages><issn>1751-9675</issn><issn>1751-9683</issn><eissn>1751-9683</eissn><abstract>Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iteration. In this study, the authors examine the steady-state performance of PDRLS algorithm in the presence of noisy links by means of an energy conservation argument. They consider the mean-square-deviation (MSD) as the performance metric in the steady-state and derive a theoretical expression for PDRLS algorithm with noisy links. The authors’ analysis reveals that unlike the established statements on PDRLS scheme under ideal links, the trade-off between MSD performance and the number of selected entries of the intermediate estimate vectors, as a sign of communication cost, is mitigated. They further examine the convergence behaviour of the PDRLS algorithm. The obtained results show that under certain statistical assumptions for the measurement data and noise signals, under noisy links the PDRLS algorithm is stable in both mean and mean-square senses. Finally, they present some simulation results to verify the theoretical findings.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-spr.2016.0544</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-9675
ispartof IET signal processing, 2017-08, Vol.11 (6), p.749-757
issn 1751-9675
1751-9683
1751-9683
language eng
recordid cdi_crossref_primary_10_1049_iet_spr_2016_0544
source Wiley Open Access Journals
subjects adaptive network implementation
energy conservation argument
intermediate vector estimate
least squares approximations
mean‐square‐deviation
MSD
noisy links
partial diffusion‐based recursive least squares
PDRLS
power consumption
radio links
Research Article
statistical assumptions
telecommunication power management
title Analysis of partial diffusion recursive least squares adaptation over noisy links
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20partial%20diffusion%20recursive%20least%20squares%20adaptation%20over%20noisy%20links&rft.jtitle=IET%20signal%20processing&rft.au=Vahidpour,%20Vahid&rft.date=2017-08&rft.volume=11&rft.issue=6&rft.spage=749&rft.epage=757&rft.pages=749-757&rft.issn=1751-9675&rft.eissn=1751-9683&rft_id=info:doi/10.1049/iet-spr.2016.0544&rft_dat=%3Cwiley_24P%3ESIL2BF00507%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true