Loading…
Analysis of partial diffusion recursive least squares adaptation over noisy links
Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iter...
Saved in:
Published in: | IET signal processing 2017-08, Vol.11 (6), p.749-757 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3 |
container_end_page | 757 |
container_issue | 6 |
container_start_page | 749 |
container_title | IET signal processing |
container_volume | 11 |
creator | Vahidpour, Vahid Rastegarnia, Amir Khalili, Azam Sanei, Saeid |
description | Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iteration. In this study, the authors examine the steady-state performance of PDRLS algorithm in the presence of noisy links by means of an energy conservation argument. They consider the mean-square-deviation (MSD) as the performance metric in the steady-state and derive a theoretical expression for PDRLS algorithm with noisy links. The authors’ analysis reveals that unlike the established statements on PDRLS scheme under ideal links, the trade-off between MSD performance and the number of selected entries of the intermediate estimate vectors, as a sign of communication cost, is mitigated. They further examine the convergence behaviour of the PDRLS algorithm. The obtained results show that under certain statistical assumptions for the measurement data and noise signals, under noisy links the PDRLS algorithm is stable in both mean and mean-square senses. Finally, they present some simulation results to verify the theoretical findings. |
doi_str_mv | 10.1049/iet-spr.2016.0544 |
format | article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_iet_spr_2016_0544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SIL2BF00507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwAez8Ayl2YscJu1JRqBQJIWBtuX5ILiEJnqQof4-jIJawmlncc0dzELqmZEUJK2-87RPowiolNF8RztgJWlDBaVLmRXb6uwt-ji4ADoTwnNN0gZ7XjapH8IBbhzsVeq9qbLxzA_i2wcHqIYA_WlxbBT2Gz0EFC1gZ1fWqnyLt0QbctB5GXPvmHS7RmVM12KufuURv2_vXzWNSPT3sNusq0VnGRKKISSlnRhCqSidsoS0vjM7E3lBiirykutCapdZkzHFqrNLxN8dztyf53phsiejcq0MLEKyTXfAfKoySEjk5kdGJjE7k5EROTiJzOzNfvrbj_4B82VXp3TbaIiLCyQxPsUM7hGgO_jj2DTnYegI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of partial diffusion recursive least squares adaptation over noisy links</title><source>Wiley Open Access Journals</source><creator>Vahidpour, Vahid ; Rastegarnia, Amir ; Khalili, Azam ; Sanei, Saeid</creator><creatorcontrib>Vahidpour, Vahid ; Rastegarnia, Amir ; Khalili, Azam ; Sanei, Saeid</creatorcontrib><description>Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iteration. In this study, the authors examine the steady-state performance of PDRLS algorithm in the presence of noisy links by means of an energy conservation argument. They consider the mean-square-deviation (MSD) as the performance metric in the steady-state and derive a theoretical expression for PDRLS algorithm with noisy links. The authors’ analysis reveals that unlike the established statements on PDRLS scheme under ideal links, the trade-off between MSD performance and the number of selected entries of the intermediate estimate vectors, as a sign of communication cost, is mitigated. They further examine the convergence behaviour of the PDRLS algorithm. The obtained results show that under certain statistical assumptions for the measurement data and noise signals, under noisy links the PDRLS algorithm is stable in both mean and mean-square senses. Finally, they present some simulation results to verify the theoretical findings.</description><identifier>ISSN: 1751-9675</identifier><identifier>ISSN: 1751-9683</identifier><identifier>EISSN: 1751-9683</identifier><identifier>DOI: 10.1049/iet-spr.2016.0544</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>adaptive network implementation ; energy conservation argument ; intermediate vector estimate ; least squares approximations ; mean‐square‐deviation ; MSD ; noisy links ; partial diffusion‐based recursive least squares ; PDRLS ; power consumption ; radio links ; Research Article ; statistical assumptions ; telecommunication power management</subject><ispartof>IET signal processing, 2017-08, Vol.11 (6), p.749-757</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3</citedby><cites>FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-spr.2016.0544$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-spr.2016.0544$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11542,27903,27904,46030,46454</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2016.0544$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Vahidpour, Vahid</creatorcontrib><creatorcontrib>Rastegarnia, Amir</creatorcontrib><creatorcontrib>Khalili, Azam</creatorcontrib><creatorcontrib>Sanei, Saeid</creatorcontrib><title>Analysis of partial diffusion recursive least squares adaptation over noisy links</title><title>IET signal processing</title><description>Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iteration. In this study, the authors examine the steady-state performance of PDRLS algorithm in the presence of noisy links by means of an energy conservation argument. They consider the mean-square-deviation (MSD) as the performance metric in the steady-state and derive a theoretical expression for PDRLS algorithm with noisy links. The authors’ analysis reveals that unlike the established statements on PDRLS scheme under ideal links, the trade-off between MSD performance and the number of selected entries of the intermediate estimate vectors, as a sign of communication cost, is mitigated. They further examine the convergence behaviour of the PDRLS algorithm. The obtained results show that under certain statistical assumptions for the measurement data and noise signals, under noisy links the PDRLS algorithm is stable in both mean and mean-square senses. Finally, they present some simulation results to verify the theoretical findings.</description><subject>adaptive network implementation</subject><subject>energy conservation argument</subject><subject>intermediate vector estimate</subject><subject>least squares approximations</subject><subject>mean‐square‐deviation</subject><subject>MSD</subject><subject>noisy links</subject><subject>partial diffusion‐based recursive least squares</subject><subject>PDRLS</subject><subject>power consumption</subject><subject>radio links</subject><subject>Research Article</subject><subject>statistical assumptions</subject><subject>telecommunication power management</subject><issn>1751-9675</issn><issn>1751-9683</issn><issn>1751-9683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwAez8Ayl2YscJu1JRqBQJIWBtuX5ILiEJnqQof4-jIJawmlncc0dzELqmZEUJK2-87RPowiolNF8RztgJWlDBaVLmRXb6uwt-ji4ADoTwnNN0gZ7XjapH8IBbhzsVeq9qbLxzA_i2wcHqIYA_WlxbBT2Gz0EFC1gZ1fWqnyLt0QbctB5GXPvmHS7RmVM12KufuURv2_vXzWNSPT3sNusq0VnGRKKISSlnRhCqSidsoS0vjM7E3lBiirykutCapdZkzHFqrNLxN8dztyf53phsiejcq0MLEKyTXfAfKoySEjk5kdGJjE7k5EROTiJzOzNfvrbj_4B82VXp3TbaIiLCyQxPsUM7hGgO_jj2DTnYegI</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Vahidpour, Vahid</creator><creator>Rastegarnia, Amir</creator><creator>Khalili, Azam</creator><creator>Sanei, Saeid</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201708</creationdate><title>Analysis of partial diffusion recursive least squares adaptation over noisy links</title><author>Vahidpour, Vahid ; Rastegarnia, Amir ; Khalili, Azam ; Sanei, Saeid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>adaptive network implementation</topic><topic>energy conservation argument</topic><topic>intermediate vector estimate</topic><topic>least squares approximations</topic><topic>mean‐square‐deviation</topic><topic>MSD</topic><topic>noisy links</topic><topic>partial diffusion‐based recursive least squares</topic><topic>PDRLS</topic><topic>power consumption</topic><topic>radio links</topic><topic>Research Article</topic><topic>statistical assumptions</topic><topic>telecommunication power management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vahidpour, Vahid</creatorcontrib><creatorcontrib>Rastegarnia, Amir</creatorcontrib><creatorcontrib>Khalili, Azam</creatorcontrib><creatorcontrib>Sanei, Saeid</creatorcontrib><collection>CrossRef</collection><jtitle>IET signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vahidpour, Vahid</au><au>Rastegarnia, Amir</au><au>Khalili, Azam</au><au>Sanei, Saeid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of partial diffusion recursive least squares adaptation over noisy links</atitle><jtitle>IET signal processing</jtitle><date>2017-08</date><risdate>2017</risdate><volume>11</volume><issue>6</issue><spage>749</spage><epage>757</epage><pages>749-757</pages><issn>1751-9675</issn><issn>1751-9683</issn><eissn>1751-9683</eissn><abstract>Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iteration. In this study, the authors examine the steady-state performance of PDRLS algorithm in the presence of noisy links by means of an energy conservation argument. They consider the mean-square-deviation (MSD) as the performance metric in the steady-state and derive a theoretical expression for PDRLS algorithm with noisy links. The authors’ analysis reveals that unlike the established statements on PDRLS scheme under ideal links, the trade-off between MSD performance and the number of selected entries of the intermediate estimate vectors, as a sign of communication cost, is mitigated. They further examine the convergence behaviour of the PDRLS algorithm. The obtained results show that under certain statistical assumptions for the measurement data and noise signals, under noisy links the PDRLS algorithm is stable in both mean and mean-square senses. Finally, they present some simulation results to verify the theoretical findings.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-spr.2016.0544</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-9675 |
ispartof | IET signal processing, 2017-08, Vol.11 (6), p.749-757 |
issn | 1751-9675 1751-9683 1751-9683 |
language | eng |
recordid | cdi_crossref_primary_10_1049_iet_spr_2016_0544 |
source | Wiley Open Access Journals |
subjects | adaptive network implementation energy conservation argument intermediate vector estimate least squares approximations mean‐square‐deviation MSD noisy links partial diffusion‐based recursive least squares PDRLS power consumption radio links Research Article statistical assumptions telecommunication power management |
title | Analysis of partial diffusion recursive least squares adaptation over noisy links |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20partial%20diffusion%20recursive%20least%20squares%20adaptation%20over%20noisy%20links&rft.jtitle=IET%20signal%20processing&rft.au=Vahidpour,%20Vahid&rft.date=2017-08&rft.volume=11&rft.issue=6&rft.spage=749&rft.epage=757&rft.pages=749-757&rft.issn=1751-9675&rft.eissn=1751-9683&rft_id=info:doi/10.1049/iet-spr.2016.0544&rft_dat=%3Cwiley_24P%3ESIL2BF00507%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3347-a0d2154d701a9f7e8ce58dc37bd10d8691c8cc42ed34f51deac201f56fb06bdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |