Loading…

Collaborative framework for automatic classification of respiratory sounds

There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnorma...

Full description

Saved in:
Bibliographic Details
Published in:IET signal processing 2020-06, Vol.14 (4), p.223-228
Main Author: Ntalampiras, Stavros
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63
cites cdi_FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63
container_end_page 228
container_issue 4
container_start_page 223
container_title IET signal processing
container_volume 14
creator Ntalampiras, Stavros
description There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnormal respiratory sounds. Thanks to a recent challenge, a real-world dataset specifically designed to address the needs of the specific problem is available to the scientific community. Unlike previous works in the literature, the authors take advantage of information provided by several stethoscopes simultaneously, i.e. elaborating at the acoustic sensor network level. To this end, they employ two features sets extracted from different domains, i.e. spectral and wavelet. These are modelled by convolutional neural networks, hidden Markov models and Gaussian mixture models. Subsequently, a synergistic scheme is designed operating at the decision level of the best-performing classifier with respect to each stethoscope. Interestingly, such a scheme was able to boost the classification accuracy surpassing the current state of the art as it is able to identify respiratory sound patterns with a 66.7% accuracy.
doi_str_mv 10.1049/iet-spr.2019.0487
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_iet_spr_2019_0487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SIL2BF00804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63</originalsourceid><addsrcrecordid>eNqFkMFOwzAMQCMEEmPwAdzyAy1Om6YJN6jYGJrEAThHaZpIGd0yJS3T_p5UQxzhZFv2s-WH0C2BnAAVd84MWdyHvAAicqC8PkMzUlckE4yX5795XV2iqxg3ABWrSDFDL43ve9X6oAb3ZbANamsOPnxi6wNW4-C3qaGx7lWMzjqdKr_D3uJg4t4lyocjjn7cdfEaXVjVR3PzE-foY_H03jxn69flqnlYZ7qsa5qJsqOWdVxDx4URmrSClyW0utCWESF4V2mqwdKqIC2lpraMF8x2rWoZZYaVc0ROe3XwMQZj5T64rQpHSUBOMmSSIZMMOcmQk4zE3J-Yg-vN8X9Avq3WxeMCgANNcHaCp7GNH8MuvffHsW-Aendc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Collaborative framework for automatic classification of respiratory sounds</title><source>Wiley Online Library Open Access</source><creator>Ntalampiras, Stavros</creator><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><description>There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnormal respiratory sounds. Thanks to a recent challenge, a real-world dataset specifically designed to address the needs of the specific problem is available to the scientific community. Unlike previous works in the literature, the authors take advantage of information provided by several stethoscopes simultaneously, i.e. elaborating at the acoustic sensor network level. To this end, they employ two features sets extracted from different domains, i.e. spectral and wavelet. These are modelled by convolutional neural networks, hidden Markov models and Gaussian mixture models. Subsequently, a synergistic scheme is designed operating at the decision level of the best-performing classifier with respect to each stethoscope. Interestingly, such a scheme was able to boost the classification accuracy surpassing the current state of the art as it is able to identify respiratory sound patterns with a 66.7% accuracy.</description><identifier>ISSN: 1751-9675</identifier><identifier>ISSN: 1751-9683</identifier><identifier>EISSN: 1751-9683</identifier><identifier>DOI: 10.1049/iet-spr.2019.0487</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>abnormal respiratory sounds ; acoustic properties ; acoustic sensor network level ; airway path ; audio signal processing ; automatic audio signal ; automatic classification ; classification accuracy ; collaborative framework ; convolutional neural nets ; convolutional neural networks ; decision level ; diseases ; feature extraction ; Gaussian mixture models ; Gaussian processes ; hidden Markov models ; human respiratory apparatus ; learning (artificial intelligence) ; medical signal processing ; normal respiratory sounds ; pattern classification ; pneumodynamics ; real‐world dataset ; Research Article ; respiratory sound patterns ; scientific community ; signal classification ; spectral domains ; stethoscope ; wavelet domains</subject><ispartof>IET signal processing, 2020-06, Vol.14 (4), p.223-228</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63</citedby><cites>FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63</cites><orcidid>0000-0003-3482-9215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-spr.2019.0487$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-spr.2019.0487$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2019.0487$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><title>Collaborative framework for automatic classification of respiratory sounds</title><title>IET signal processing</title><description>There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnormal respiratory sounds. Thanks to a recent challenge, a real-world dataset specifically designed to address the needs of the specific problem is available to the scientific community. Unlike previous works in the literature, the authors take advantage of information provided by several stethoscopes simultaneously, i.e. elaborating at the acoustic sensor network level. To this end, they employ two features sets extracted from different domains, i.e. spectral and wavelet. These are modelled by convolutional neural networks, hidden Markov models and Gaussian mixture models. Subsequently, a synergistic scheme is designed operating at the decision level of the best-performing classifier with respect to each stethoscope. Interestingly, such a scheme was able to boost the classification accuracy surpassing the current state of the art as it is able to identify respiratory sound patterns with a 66.7% accuracy.</description><subject>abnormal respiratory sounds</subject><subject>acoustic properties</subject><subject>acoustic sensor network level</subject><subject>airway path</subject><subject>audio signal processing</subject><subject>automatic audio signal</subject><subject>automatic classification</subject><subject>classification accuracy</subject><subject>collaborative framework</subject><subject>convolutional neural nets</subject><subject>convolutional neural networks</subject><subject>decision level</subject><subject>diseases</subject><subject>feature extraction</subject><subject>Gaussian mixture models</subject><subject>Gaussian processes</subject><subject>hidden Markov models</subject><subject>human respiratory apparatus</subject><subject>learning (artificial intelligence)</subject><subject>medical signal processing</subject><subject>normal respiratory sounds</subject><subject>pattern classification</subject><subject>pneumodynamics</subject><subject>real‐world dataset</subject><subject>Research Article</subject><subject>respiratory sound patterns</subject><subject>scientific community</subject><subject>signal classification</subject><subject>spectral domains</subject><subject>stethoscope</subject><subject>wavelet domains</subject><issn>1751-9675</issn><issn>1751-9683</issn><issn>1751-9683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMQCMEEmPwAdzyAy1Om6YJN6jYGJrEAThHaZpIGd0yJS3T_p5UQxzhZFv2s-WH0C2BnAAVd84MWdyHvAAicqC8PkMzUlckE4yX5795XV2iqxg3ABWrSDFDL43ve9X6oAb3ZbANamsOPnxi6wNW4-C3qaGx7lWMzjqdKr_D3uJg4t4lyocjjn7cdfEaXVjVR3PzE-foY_H03jxn69flqnlYZ7qsa5qJsqOWdVxDx4URmrSClyW0utCWESF4V2mqwdKqIC2lpraMF8x2rWoZZYaVc0ROe3XwMQZj5T64rQpHSUBOMmSSIZMMOcmQk4zE3J-Yg-vN8X9Avq3WxeMCgANNcHaCp7GNH8MuvffHsW-Aendc</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Ntalampiras, Stavros</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3482-9215</orcidid></search><sort><creationdate>202006</creationdate><title>Collaborative framework for automatic classification of respiratory sounds</title><author>Ntalampiras, Stavros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>abnormal respiratory sounds</topic><topic>acoustic properties</topic><topic>acoustic sensor network level</topic><topic>airway path</topic><topic>audio signal processing</topic><topic>automatic audio signal</topic><topic>automatic classification</topic><topic>classification accuracy</topic><topic>collaborative framework</topic><topic>convolutional neural nets</topic><topic>convolutional neural networks</topic><topic>decision level</topic><topic>diseases</topic><topic>feature extraction</topic><topic>Gaussian mixture models</topic><topic>Gaussian processes</topic><topic>hidden Markov models</topic><topic>human respiratory apparatus</topic><topic>learning (artificial intelligence)</topic><topic>medical signal processing</topic><topic>normal respiratory sounds</topic><topic>pattern classification</topic><topic>pneumodynamics</topic><topic>real‐world dataset</topic><topic>Research Article</topic><topic>respiratory sound patterns</topic><topic>scientific community</topic><topic>signal classification</topic><topic>spectral domains</topic><topic>stethoscope</topic><topic>wavelet domains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><collection>CrossRef</collection><jtitle>IET signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ntalampiras, Stavros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative framework for automatic classification of respiratory sounds</atitle><jtitle>IET signal processing</jtitle><date>2020-06</date><risdate>2020</risdate><volume>14</volume><issue>4</issue><spage>223</spage><epage>228</epage><pages>223-228</pages><issn>1751-9675</issn><issn>1751-9683</issn><eissn>1751-9683</eissn><abstract>There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnormal respiratory sounds. Thanks to a recent challenge, a real-world dataset specifically designed to address the needs of the specific problem is available to the scientific community. Unlike previous works in the literature, the authors take advantage of information provided by several stethoscopes simultaneously, i.e. elaborating at the acoustic sensor network level. To this end, they employ two features sets extracted from different domains, i.e. spectral and wavelet. These are modelled by convolutional neural networks, hidden Markov models and Gaussian mixture models. Subsequently, a synergistic scheme is designed operating at the decision level of the best-performing classifier with respect to each stethoscope. Interestingly, such a scheme was able to boost the classification accuracy surpassing the current state of the art as it is able to identify respiratory sound patterns with a 66.7% accuracy.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-spr.2019.0487</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3482-9215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-9675
ispartof IET signal processing, 2020-06, Vol.14 (4), p.223-228
issn 1751-9675
1751-9683
1751-9683
language eng
recordid cdi_crossref_primary_10_1049_iet_spr_2019_0487
source Wiley Online Library Open Access
subjects abnormal respiratory sounds
acoustic properties
acoustic sensor network level
airway path
audio signal processing
automatic audio signal
automatic classification
classification accuracy
collaborative framework
convolutional neural nets
convolutional neural networks
decision level
diseases
feature extraction
Gaussian mixture models
Gaussian processes
hidden Markov models
human respiratory apparatus
learning (artificial intelligence)
medical signal processing
normal respiratory sounds
pattern classification
pneumodynamics
real‐world dataset
Research Article
respiratory sound patterns
scientific community
signal classification
spectral domains
stethoscope
wavelet domains
title Collaborative framework for automatic classification of respiratory sounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20framework%20for%20automatic%20classification%20of%20respiratory%20sounds&rft.jtitle=IET%20signal%20processing&rft.au=Ntalampiras,%20Stavros&rft.date=2020-06&rft.volume=14&rft.issue=4&rft.spage=223&rft.epage=228&rft.pages=223-228&rft.issn=1751-9675&rft.eissn=1751-9683&rft_id=info:doi/10.1049/iet-spr.2019.0487&rft_dat=%3Cwiley_24P%3ESIL2BF00804%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true