Loading…
Collaborative framework for automatic classification of respiratory sounds
There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnorma...
Saved in:
Published in: | IET signal processing 2020-06, Vol.14 (4), p.223-228 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63 |
container_end_page | 228 |
container_issue | 4 |
container_start_page | 223 |
container_title | IET signal processing |
container_volume | 14 |
creator | Ntalampiras, Stavros |
description | There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnormal respiratory sounds. Thanks to a recent challenge, a real-world dataset specifically designed to address the needs of the specific problem is available to the scientific community. Unlike previous works in the literature, the authors take advantage of information provided by several stethoscopes simultaneously, i.e. elaborating at the acoustic sensor network level. To this end, they employ two features sets extracted from different domains, i.e. spectral and wavelet. These are modelled by convolutional neural networks, hidden Markov models and Gaussian mixture models. Subsequently, a synergistic scheme is designed operating at the decision level of the best-performing classifier with respect to each stethoscope. Interestingly, such a scheme was able to boost the classification accuracy surpassing the current state of the art as it is able to identify respiratory sound patterns with a 66.7% accuracy. |
doi_str_mv | 10.1049/iet-spr.2019.0487 |
format | article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_iet_spr_2019_0487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SIL2BF00804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63</originalsourceid><addsrcrecordid>eNqFkMFOwzAMQCMEEmPwAdzyAy1Om6YJN6jYGJrEAThHaZpIGd0yJS3T_p5UQxzhZFv2s-WH0C2BnAAVd84MWdyHvAAicqC8PkMzUlckE4yX5795XV2iqxg3ABWrSDFDL43ve9X6oAb3ZbANamsOPnxi6wNW4-C3qaGx7lWMzjqdKr_D3uJg4t4lyocjjn7cdfEaXVjVR3PzE-foY_H03jxn69flqnlYZ7qsa5qJsqOWdVxDx4URmrSClyW0utCWESF4V2mqwdKqIC2lpraMF8x2rWoZZYaVc0ROe3XwMQZj5T64rQpHSUBOMmSSIZMMOcmQk4zE3J-Yg-vN8X9Avq3WxeMCgANNcHaCp7GNH8MuvffHsW-Aendc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Collaborative framework for automatic classification of respiratory sounds</title><source>Wiley Online Library Open Access</source><creator>Ntalampiras, Stavros</creator><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><description>There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnormal respiratory sounds. Thanks to a recent challenge, a real-world dataset specifically designed to address the needs of the specific problem is available to the scientific community. Unlike previous works in the literature, the authors take advantage of information provided by several stethoscopes simultaneously, i.e. elaborating at the acoustic sensor network level. To this end, they employ two features sets extracted from different domains, i.e. spectral and wavelet. These are modelled by convolutional neural networks, hidden Markov models and Gaussian mixture models. Subsequently, a synergistic scheme is designed operating at the decision level of the best-performing classifier with respect to each stethoscope. Interestingly, such a scheme was able to boost the classification accuracy surpassing the current state of the art as it is able to identify respiratory sound patterns with a 66.7% accuracy.</description><identifier>ISSN: 1751-9675</identifier><identifier>ISSN: 1751-9683</identifier><identifier>EISSN: 1751-9683</identifier><identifier>DOI: 10.1049/iet-spr.2019.0487</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>abnormal respiratory sounds ; acoustic properties ; acoustic sensor network level ; airway path ; audio signal processing ; automatic audio signal ; automatic classification ; classification accuracy ; collaborative framework ; convolutional neural nets ; convolutional neural networks ; decision level ; diseases ; feature extraction ; Gaussian mixture models ; Gaussian processes ; hidden Markov models ; human respiratory apparatus ; learning (artificial intelligence) ; medical signal processing ; normal respiratory sounds ; pattern classification ; pneumodynamics ; real‐world dataset ; Research Article ; respiratory sound patterns ; scientific community ; signal classification ; spectral domains ; stethoscope ; wavelet domains</subject><ispartof>IET signal processing, 2020-06, Vol.14 (4), p.223-228</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63</citedby><cites>FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63</cites><orcidid>0000-0003-3482-9215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-spr.2019.0487$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-spr.2019.0487$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2019.0487$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><title>Collaborative framework for automatic classification of respiratory sounds</title><title>IET signal processing</title><description>There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnormal respiratory sounds. Thanks to a recent challenge, a real-world dataset specifically designed to address the needs of the specific problem is available to the scientific community. Unlike previous works in the literature, the authors take advantage of information provided by several stethoscopes simultaneously, i.e. elaborating at the acoustic sensor network level. To this end, they employ two features sets extracted from different domains, i.e. spectral and wavelet. These are modelled by convolutional neural networks, hidden Markov models and Gaussian mixture models. Subsequently, a synergistic scheme is designed operating at the decision level of the best-performing classifier with respect to each stethoscope. Interestingly, such a scheme was able to boost the classification accuracy surpassing the current state of the art as it is able to identify respiratory sound patterns with a 66.7% accuracy.</description><subject>abnormal respiratory sounds</subject><subject>acoustic properties</subject><subject>acoustic sensor network level</subject><subject>airway path</subject><subject>audio signal processing</subject><subject>automatic audio signal</subject><subject>automatic classification</subject><subject>classification accuracy</subject><subject>collaborative framework</subject><subject>convolutional neural nets</subject><subject>convolutional neural networks</subject><subject>decision level</subject><subject>diseases</subject><subject>feature extraction</subject><subject>Gaussian mixture models</subject><subject>Gaussian processes</subject><subject>hidden Markov models</subject><subject>human respiratory apparatus</subject><subject>learning (artificial intelligence)</subject><subject>medical signal processing</subject><subject>normal respiratory sounds</subject><subject>pattern classification</subject><subject>pneumodynamics</subject><subject>real‐world dataset</subject><subject>Research Article</subject><subject>respiratory sound patterns</subject><subject>scientific community</subject><subject>signal classification</subject><subject>spectral domains</subject><subject>stethoscope</subject><subject>wavelet domains</subject><issn>1751-9675</issn><issn>1751-9683</issn><issn>1751-9683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMQCMEEmPwAdzyAy1Om6YJN6jYGJrEAThHaZpIGd0yJS3T_p5UQxzhZFv2s-WH0C2BnAAVd84MWdyHvAAicqC8PkMzUlckE4yX5795XV2iqxg3ABWrSDFDL43ve9X6oAb3ZbANamsOPnxi6wNW4-C3qaGx7lWMzjqdKr_D3uJg4t4lyocjjn7cdfEaXVjVR3PzE-foY_H03jxn69flqnlYZ7qsa5qJsqOWdVxDx4URmrSClyW0utCWESF4V2mqwdKqIC2lpraMF8x2rWoZZYaVc0ROe3XwMQZj5T64rQpHSUBOMmSSIZMMOcmQk4zE3J-Yg-vN8X9Avq3WxeMCgANNcHaCp7GNH8MuvffHsW-Aendc</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Ntalampiras, Stavros</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3482-9215</orcidid></search><sort><creationdate>202006</creationdate><title>Collaborative framework for automatic classification of respiratory sounds</title><author>Ntalampiras, Stavros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>abnormal respiratory sounds</topic><topic>acoustic properties</topic><topic>acoustic sensor network level</topic><topic>airway path</topic><topic>audio signal processing</topic><topic>automatic audio signal</topic><topic>automatic classification</topic><topic>classification accuracy</topic><topic>collaborative framework</topic><topic>convolutional neural nets</topic><topic>convolutional neural networks</topic><topic>decision level</topic><topic>diseases</topic><topic>feature extraction</topic><topic>Gaussian mixture models</topic><topic>Gaussian processes</topic><topic>hidden Markov models</topic><topic>human respiratory apparatus</topic><topic>learning (artificial intelligence)</topic><topic>medical signal processing</topic><topic>normal respiratory sounds</topic><topic>pattern classification</topic><topic>pneumodynamics</topic><topic>real‐world dataset</topic><topic>Research Article</topic><topic>respiratory sound patterns</topic><topic>scientific community</topic><topic>signal classification</topic><topic>spectral domains</topic><topic>stethoscope</topic><topic>wavelet domains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntalampiras, Stavros</creatorcontrib><collection>CrossRef</collection><jtitle>IET signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ntalampiras, Stavros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative framework for automatic classification of respiratory sounds</atitle><jtitle>IET signal processing</jtitle><date>2020-06</date><risdate>2020</risdate><volume>14</volume><issue>4</issue><spage>223</spage><epage>228</epage><pages>223-228</pages><issn>1751-9675</issn><issn>1751-9683</issn><eissn>1751-9683</eissn><abstract>There are several diseases (e.g. asthma, pneumonia etc.) affecting the human respiratory apparatus altering its airway path substantially, thus characterising its acoustic properties. This work unfolds an automatic audio signal processing framework achieving classification between normal and abnormal respiratory sounds. Thanks to a recent challenge, a real-world dataset specifically designed to address the needs of the specific problem is available to the scientific community. Unlike previous works in the literature, the authors take advantage of information provided by several stethoscopes simultaneously, i.e. elaborating at the acoustic sensor network level. To this end, they employ two features sets extracted from different domains, i.e. spectral and wavelet. These are modelled by convolutional neural networks, hidden Markov models and Gaussian mixture models. Subsequently, a synergistic scheme is designed operating at the decision level of the best-performing classifier with respect to each stethoscope. Interestingly, such a scheme was able to boost the classification accuracy surpassing the current state of the art as it is able to identify respiratory sound patterns with a 66.7% accuracy.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-spr.2019.0487</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3482-9215</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-9675 |
ispartof | IET signal processing, 2020-06, Vol.14 (4), p.223-228 |
issn | 1751-9675 1751-9683 1751-9683 |
language | eng |
recordid | cdi_crossref_primary_10_1049_iet_spr_2019_0487 |
source | Wiley Online Library Open Access |
subjects | abnormal respiratory sounds acoustic properties acoustic sensor network level airway path audio signal processing automatic audio signal automatic classification classification accuracy collaborative framework convolutional neural nets convolutional neural networks decision level diseases feature extraction Gaussian mixture models Gaussian processes hidden Markov models human respiratory apparatus learning (artificial intelligence) medical signal processing normal respiratory sounds pattern classification pneumodynamics real‐world dataset Research Article respiratory sound patterns scientific community signal classification spectral domains stethoscope wavelet domains |
title | Collaborative framework for automatic classification of respiratory sounds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20framework%20for%20automatic%20classification%20of%20respiratory%20sounds&rft.jtitle=IET%20signal%20processing&rft.au=Ntalampiras,%20Stavros&rft.date=2020-06&rft.volume=14&rft.issue=4&rft.spage=223&rft.epage=228&rft.pages=223-228&rft.issn=1751-9675&rft.eissn=1751-9683&rft_id=info:doi/10.1049/iet-spr.2019.0487&rft_dat=%3Cwiley_24P%3ESIL2BF00804%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3774-93d4f6d8c0d89e9c1b98330bc2cf61998d5c4c0f4521b44e7f6826fdbab646e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |