Loading…

Down-regulation and clinical significance of miR-7-2-3p in papillary thyroid carcinoma with multiple detecting methods

Altered miRNA expression participates in the biological progress of thyroid carcinoma and functions as a diagnostic marker or therapeutic agent. However, the role of miR-7-2-3p is currently unclear. The authors’ study was the first investigation of miR-7-2-3p expression level and diagnostic ability...

Full description

Saved in:
Bibliographic Details
Published in:IET systems biology 2019-10, Vol.13 (5), p.225-233
Main Authors: Wu, Hua-yu, Wei, Yi, Pan, Shang-ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Altered miRNA expression participates in the biological progress of thyroid carcinoma and functions as a diagnostic marker or therapeutic agent. However, the role of miR-7-2-3p is currently unclear. The authors’ study was the first investigation of miR-7-2-3p expression level and diagnostic ability in several public databases. Potential target genes were obtained from DIANA Tools, and function enrichment analysis was then performed. Furthermore, the authors examined expression levels of potential targets in the Human Protein Atlas (HPA) and the Cancer Genome Atlas (TCGA). Finally, the potential transcription factors (TFs) were predicted by JASPAR. TCGA, GSE62054, GSE73182, GSE40807, and GSE55780 revealed that miR-7-2-3p expression in papillary thyroid carcinoma (PTC) tissues was notably lower compared with non-tumour tissues, while its expression in E-MATB-736 showed no remarkable difference. Function enrichment analysis showed that 698 genes were enriched in pathways, including pathways in cancer, and glioma. CCND1, GSK3B, and ITGAV of pathways in cancer were inverse correlations with miR-7-2-3p in both post-transcription and protein levels. According to the TF prediction, the prospective upstream TFs of miR-7-2-3p were ISX, SPI1, PRRX1, and BARX1. MiR-7-2-3p was significantly down-regulated and may act on PTC progression by crucial pathways. However, the mechanisms of miR-7-2-3p need further investigation.
ISSN:1751-8849
1751-8857
DOI:10.1049/iet-syb.2019.0025