Loading…
Improving fuzzy C-means clustering algorithm based on a density-induced distance measure
The authors report an improved fuzzy C-means algorithm in comparison with the conventional one by employing a density-induced distance metric based on a novel calculation method of relative density degree. By using various synthetic and real data sets, the clustering performance of the proposed meth...
Saved in:
Published in: | Journal of engineering (Stevenage, England) England), 2014-04, Vol.2014 (4), p.137-139 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3446-7fd5df06a1bd39743696ec432c0ee4cfa18bdf6cbcdd09cd6acbb0c2a8cca24a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3446-7fd5df06a1bd39743696ec432c0ee4cfa18bdf6cbcdd09cd6acbb0c2a8cca24a3 |
container_end_page | 139 |
container_issue | 4 |
container_start_page | 137 |
container_title | Journal of engineering (Stevenage, England) |
container_volume | 2014 |
creator | Lu, Chunhong Xiao, Shaoqing Gu, Xiaofeng |
description | The authors report an improved fuzzy C-means algorithm in comparison with the conventional one by employing a density-induced distance metric based on a novel calculation method of relative density degree. By using various synthetic and real data sets, the clustering performance of the proposed method is systematically studied and compared with that of the conventional one. The obtained results support the conclusion that this novel method does not only inherit good characteristics of the traditional one, but also possesses improved partitions. |
doi_str_mv | 10.1049/joe.2014.0053 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_joe_2014_0053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c300fe510e514ef1a311a0ee5711488d</doaj_id><sourcerecordid>TJE2BF00046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3446-7fd5df06a1bd39743696ec432c0ee4cfa18bdf6cbcdd09cd6acbb0c2a8cca24a3</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4soKOrRey8ePHS-NGm3HXVMnQi7TPAWXl9eZkbXjqRV5l9v5kQ8iIeQ8PL9fglfklwIGAhQ4-tVy4MchBoAFPIgOcmhEJmUUBz-Oh8n5yGsAEBIlYMSJ8nLbL3x7ZtrlqntPz626SRbMzYhpboPHfvdBdbL1rvudZ1WGNikbZNiargJrttmrjE9xaFxocOGOI3x0Hs-S44s1oHPv_fT5Pluupg8ZE_z-9nk5ikjqVSZDa0pjIUSRWXkeKhkOS6ZlMwJmBVZFKPK2JIqMgbGZEqkqgLKcUSEuUJ5msz2vabFld54t0a_1S06_TVo_VKj7xzVrEkCWC4ExKXYCpRCYHymGAqhRiMTu7J9F_k2BM_2p0-A3lnW0bLeWdY7y5Ev9_y7q3n7P6wXj9P89i66V2UMXu6DjruI9b6JivTjfPqL3xgbuas_uL8_8wkdNpth</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving fuzzy C-means clustering algorithm based on a density-induced distance measure</title><source>IET Digital Library - eJournals</source><source>Wiley Online Library Open Access</source><creator>Lu, Chunhong ; Xiao, Shaoqing ; Gu, Xiaofeng</creator><creatorcontrib>Lu, Chunhong ; Xiao, Shaoqing ; Gu, Xiaofeng</creatorcontrib><description>The authors report an improved fuzzy C-means algorithm in comparison with the conventional one by employing a density-induced distance metric based on a novel calculation method of relative density degree. By using various synthetic and real data sets, the clustering performance of the proposed method is systematically studied and compared with that of the conventional one. The obtained results support the conclusion that this novel method does not only inherit good characteristics of the traditional one, but also possesses improved partitions.</description><identifier>ISSN: 2051-3305</identifier><identifier>EISSN: 2051-3305</identifier><identifier>DOI: 10.1049/joe.2014.0053</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>density-induced distance measure ; fuzzy C-means clustering algorithm ; fuzzy set theory ; pattern clustering ; real data sets ; relative density degree ; synthetic data sets</subject><ispartof>Journal of engineering (Stevenage, England), 2014-04, Vol.2014 (4), p.137-139</ispartof><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3446-7fd5df06a1bd39743696ec432c0ee4cfa18bdf6cbcdd09cd6acbb0c2a8cca24a3</citedby><cites>FETCH-LOGICAL-c3446-7fd5df06a1bd39743696ec432c0ee4cfa18bdf6cbcdd09cd6acbb0c2a8cca24a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fjoe.2014.0053$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fjoe.2014.0053$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,9735,11542,27903,27904,46030,46454</link.rule.ids></links><search><creatorcontrib>Lu, Chunhong</creatorcontrib><creatorcontrib>Xiao, Shaoqing</creatorcontrib><creatorcontrib>Gu, Xiaofeng</creatorcontrib><title>Improving fuzzy C-means clustering algorithm based on a density-induced distance measure</title><title>Journal of engineering (Stevenage, England)</title><description>The authors report an improved fuzzy C-means algorithm in comparison with the conventional one by employing a density-induced distance metric based on a novel calculation method of relative density degree. By using various synthetic and real data sets, the clustering performance of the proposed method is systematically studied and compared with that of the conventional one. The obtained results support the conclusion that this novel method does not only inherit good characteristics of the traditional one, but also possesses improved partitions.</description><subject>density-induced distance measure</subject><subject>fuzzy C-means clustering algorithm</subject><subject>fuzzy set theory</subject><subject>pattern clustering</subject><subject>real data sets</subject><subject>relative density degree</subject><subject>synthetic data sets</subject><issn>2051-3305</issn><issn>2051-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kMFLwzAUh4soKOrRey8ePHS-NGm3HXVMnQi7TPAWXl9eZkbXjqRV5l9v5kQ8iIeQ8PL9fglfklwIGAhQ4-tVy4MchBoAFPIgOcmhEJmUUBz-Oh8n5yGsAEBIlYMSJ8nLbL3x7ZtrlqntPz626SRbMzYhpboPHfvdBdbL1rvudZ1WGNikbZNiargJrttmrjE9xaFxocOGOI3x0Hs-S44s1oHPv_fT5Pluupg8ZE_z-9nk5ikjqVSZDa0pjIUSRWXkeKhkOS6ZlMwJmBVZFKPK2JIqMgbGZEqkqgLKcUSEuUJ5msz2vabFld54t0a_1S06_TVo_VKj7xzVrEkCWC4ExKXYCpRCYHymGAqhRiMTu7J9F_k2BM_2p0-A3lnW0bLeWdY7y5Ev9_y7q3n7P6wXj9P89i66V2UMXu6DjruI9b6JivTjfPqL3xgbuas_uL8_8wkdNpth</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Lu, Chunhong</creator><creator>Xiao, Shaoqing</creator><creator>Gu, Xiaofeng</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><scope>IDLOA</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201404</creationdate><title>Improving fuzzy C-means clustering algorithm based on a density-induced distance measure</title><author>Lu, Chunhong ; Xiao, Shaoqing ; Gu, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3446-7fd5df06a1bd39743696ec432c0ee4cfa18bdf6cbcdd09cd6acbb0c2a8cca24a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>density-induced distance measure</topic><topic>fuzzy C-means clustering algorithm</topic><topic>fuzzy set theory</topic><topic>pattern clustering</topic><topic>real data sets</topic><topic>relative density degree</topic><topic>synthetic data sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Chunhong</creatorcontrib><creatorcontrib>Xiao, Shaoqing</creatorcontrib><creatorcontrib>Gu, Xiaofeng</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Journal of engineering (Stevenage, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Chunhong</au><au>Xiao, Shaoqing</au><au>Gu, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving fuzzy C-means clustering algorithm based on a density-induced distance measure</atitle><jtitle>Journal of engineering (Stevenage, England)</jtitle><date>2014-04</date><risdate>2014</risdate><volume>2014</volume><issue>4</issue><spage>137</spage><epage>139</epage><pages>137-139</pages><issn>2051-3305</issn><eissn>2051-3305</eissn><abstract>The authors report an improved fuzzy C-means algorithm in comparison with the conventional one by employing a density-induced distance metric based on a novel calculation method of relative density degree. By using various synthetic and real data sets, the clustering performance of the proposed method is systematically studied and compared with that of the conventional one. The obtained results support the conclusion that this novel method does not only inherit good characteristics of the traditional one, but also possesses improved partitions.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/joe.2014.0053</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-3305 |
ispartof | Journal of engineering (Stevenage, England), 2014-04, Vol.2014 (4), p.137-139 |
issn | 2051-3305 2051-3305 |
language | eng |
recordid | cdi_crossref_primary_10_1049_joe_2014_0053 |
source | IET Digital Library - eJournals; Wiley Online Library Open Access |
subjects | density-induced distance measure fuzzy C-means clustering algorithm fuzzy set theory pattern clustering real data sets relative density degree synthetic data sets |
title | Improving fuzzy C-means clustering algorithm based on a density-induced distance measure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20fuzzy%20C-means%20clustering%20algorithm%20based%20on%20a%20density-induced%20distance%20measure&rft.jtitle=Journal%20of%20engineering%20(Stevenage,%20England)&rft.au=Lu,%20Chunhong&rft.date=2014-04&rft.volume=2014&rft.issue=4&rft.spage=137&rft.epage=139&rft.pages=137-139&rft.issn=2051-3305&rft.eissn=2051-3305&rft_id=info:doi/10.1049/joe.2014.0053&rft_dat=%3Cwiley_cross%3ETJE2BF00046%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3446-7fd5df06a1bd39743696ec432c0ee4cfa18bdf6cbcdd09cd6acbb0c2a8cca24a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |