Loading…
Online multi-frame blind deconvolution with super-resolution and saturation correction
Astronomical images taken by ground-based telescopes suffer degradation due to atmospheric turbulence. This degradation can be tackled by costly hardware-based approaches such as adaptive optics, or by sophisticated software-based methods such as lucky imaging, speckle imaging, or multi-frame deconv...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2011-07, Vol.531, p.A9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c332t-367388cee3fd2ea2d29453c2e9b8291ba015722f70cffc42fe0aef7fdf0bf3943 |
---|---|
cites | cdi_FETCH-LOGICAL-c332t-367388cee3fd2ea2d29453c2e9b8291ba015722f70cffc42fe0aef7fdf0bf3943 |
container_end_page | |
container_issue | |
container_start_page | A9 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 531 |
creator | Hirsch, M. Harmeling, S. Sra, S. Schölkopf, B. |
description | Astronomical images taken by ground-based telescopes suffer degradation due to atmospheric turbulence. This degradation can be tackled by costly hardware-based approaches such as adaptive optics, or by sophisticated software-based methods such as lucky imaging, speckle imaging, or multi-frame deconvolution. Software-based methods process a sequence of images to reconstruct a deblurred high-quality image. However, existing approaches are limited in one or several aspects: (i) they process all images in batch mode, which for thousands of images is prohibitive; (ii) they do not reconstruct a super-resolved image, even though an image sequence often contains enough information; (iii) they are unable to deal with saturated pixels; and (iv) they are usually non-blind, i.e., they assume the blur kernels to be known. In this paper we present a new method for multi-frame deconvolution called online blind deconvolution (OBD) that overcomes all these limitations simultaneously. Encouraging results on simulated and real astronomical images demonstrate that OBD yields deblurred images of comparable and often better quality than existing approaches. |
doi_str_mv | 10.1051/0004-6361/200913955 |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1051_0004_6361_200913955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_NW7P08X4_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-367388cee3fd2ea2d29453c2e9b8291ba015722f70cffc42fe0aef7fdf0bf3943</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIXcMkPmK69zuuIKl5SRTkA5WY5zloE0qSyEx5_T0Ihp90Zzax2hrFzARcCYrEAAMUTTMRCAuQC8zg-YDOhUHJIVXLIZpPimJ2E8DZAKTKcsed1U1cNRdu-7iruvNlSVAxMGZVk2-ajrfuuapvos-peo9DvyHNP4Z81gy6YrvfmF9rWe7LjesqOnKkDnf3NOXu6vnpc3vLV-uZuebniFlF2HJMUs8wSoSslGVnKXMVoJeVFJnNRGBBxKqVLwTpnlXQEhlzqSgeFw1zhnOH-rvVtCJ6c3vlqa_y3FqDHavQYXI_B9VTN4OJ7VxU6-posxr_r4aE01hls9P0mfYDsRekl_gAGE2gj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Online multi-frame blind deconvolution with super-resolution and saturation correction</title><source>EZB Free E-Journals</source><creator>Hirsch, M. ; Harmeling, S. ; Sra, S. ; Schölkopf, B.</creator><creatorcontrib>Hirsch, M. ; Harmeling, S. ; Sra, S. ; Schölkopf, B.</creatorcontrib><description>Astronomical images taken by ground-based telescopes suffer degradation due to atmospheric turbulence. This degradation can be tackled by costly hardware-based approaches such as adaptive optics, or by sophisticated software-based methods such as lucky imaging, speckle imaging, or multi-frame deconvolution. Software-based methods process a sequence of images to reconstruct a deblurred high-quality image. However, existing approaches are limited in one or several aspects: (i) they process all images in batch mode, which for thousands of images is prohibitive; (ii) they do not reconstruct a super-resolved image, even though an image sequence often contains enough information; (iii) they are unable to deal with saturated pixels; and (iv) they are usually non-blind, i.e., they assume the blur kernels to be known. In this paper we present a new method for multi-frame deconvolution called online blind deconvolution (OBD) that overcomes all these limitations simultaneously. Encouraging results on simulated and real astronomical images demonstrate that OBD yields deblurred images of comparable and often better quality than existing approaches.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/200913955</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>atmospheric effects ; methods: numerical ; techniques: image processing ; techniques: miscellaneous</subject><ispartof>Astronomy and astrophysics (Berlin), 2011-07, Vol.531, p.A9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-367388cee3fd2ea2d29453c2e9b8291ba015722f70cffc42fe0aef7fdf0bf3943</citedby><cites>FETCH-LOGICAL-c332t-367388cee3fd2ea2d29453c2e9b8291ba015722f70cffc42fe0aef7fdf0bf3943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hirsch, M.</creatorcontrib><creatorcontrib>Harmeling, S.</creatorcontrib><creatorcontrib>Sra, S.</creatorcontrib><creatorcontrib>Schölkopf, B.</creatorcontrib><title>Online multi-frame blind deconvolution with super-resolution and saturation correction</title><title>Astronomy and astrophysics (Berlin)</title><description>Astronomical images taken by ground-based telescopes suffer degradation due to atmospheric turbulence. This degradation can be tackled by costly hardware-based approaches such as adaptive optics, or by sophisticated software-based methods such as lucky imaging, speckle imaging, or multi-frame deconvolution. Software-based methods process a sequence of images to reconstruct a deblurred high-quality image. However, existing approaches are limited in one or several aspects: (i) they process all images in batch mode, which for thousands of images is prohibitive; (ii) they do not reconstruct a super-resolved image, even though an image sequence often contains enough information; (iii) they are unable to deal with saturated pixels; and (iv) they are usually non-blind, i.e., they assume the blur kernels to be known. In this paper we present a new method for multi-frame deconvolution called online blind deconvolution (OBD) that overcomes all these limitations simultaneously. Encouraging results on simulated and real astronomical images demonstrate that OBD yields deblurred images of comparable and often better quality than existing approaches.</description><subject>atmospheric effects</subject><subject>methods: numerical</subject><subject>techniques: image processing</subject><subject>techniques: miscellaneous</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMIXcMkPmK69zuuIKl5SRTkA5WY5zloE0qSyEx5_T0Ihp90Zzax2hrFzARcCYrEAAMUTTMRCAuQC8zg-YDOhUHJIVXLIZpPimJ2E8DZAKTKcsed1U1cNRdu-7iruvNlSVAxMGZVk2-ajrfuuapvos-peo9DvyHNP4Z81gy6YrvfmF9rWe7LjesqOnKkDnf3NOXu6vnpc3vLV-uZuebniFlF2HJMUs8wSoSslGVnKXMVoJeVFJnNRGBBxKqVLwTpnlXQEhlzqSgeFw1zhnOH-rvVtCJ6c3vlqa_y3FqDHavQYXI_B9VTN4OJ7VxU6-posxr_r4aE01hls9P0mfYDsRekl_gAGE2gj</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Hirsch, M.</creator><creator>Harmeling, S.</creator><creator>Sra, S.</creator><creator>Schölkopf, B.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110701</creationdate><title>Online multi-frame blind deconvolution with super-resolution and saturation correction</title><author>Hirsch, M. ; Harmeling, S. ; Sra, S. ; Schölkopf, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-367388cee3fd2ea2d29453c2e9b8291ba015722f70cffc42fe0aef7fdf0bf3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>atmospheric effects</topic><topic>methods: numerical</topic><topic>techniques: image processing</topic><topic>techniques: miscellaneous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirsch, M.</creatorcontrib><creatorcontrib>Harmeling, S.</creatorcontrib><creatorcontrib>Sra, S.</creatorcontrib><creatorcontrib>Schölkopf, B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirsch, M.</au><au>Harmeling, S.</au><au>Sra, S.</au><au>Schölkopf, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online multi-frame blind deconvolution with super-resolution and saturation correction</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>531</volume><spage>A9</spage><pages>A9-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Astronomical images taken by ground-based telescopes suffer degradation due to atmospheric turbulence. This degradation can be tackled by costly hardware-based approaches such as adaptive optics, or by sophisticated software-based methods such as lucky imaging, speckle imaging, or multi-frame deconvolution. Software-based methods process a sequence of images to reconstruct a deblurred high-quality image. However, existing approaches are limited in one or several aspects: (i) they process all images in batch mode, which for thousands of images is prohibitive; (ii) they do not reconstruct a super-resolved image, even though an image sequence often contains enough information; (iii) they are unable to deal with saturated pixels; and (iv) they are usually non-blind, i.e., they assume the blur kernels to be known. In this paper we present a new method for multi-frame deconvolution called online blind deconvolution (OBD) that overcomes all these limitations simultaneously. Encouraging results on simulated and real astronomical images demonstrate that OBD yields deblurred images of comparable and often better quality than existing approaches.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/200913955</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2011-07, Vol.531, p.A9 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_crossref_primary_10_1051_0004_6361_200913955 |
source | EZB Free E-Journals |
subjects | atmospheric effects methods: numerical techniques: image processing techniques: miscellaneous |
title | Online multi-frame blind deconvolution with super-resolution and saturation correction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20multi-frame%20blind%20deconvolution%20with%20super-resolution%20and%20saturation%20correction&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Hirsch,%20M.&rft.date=2011-07-01&rft.volume=531&rft.spage=A9&rft.pages=A9-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/200913955&rft_dat=%3Cistex_cross%3Eark_67375_80W_NW7P08X4_C%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-367388cee3fd2ea2d29453c2e9b8291ba015722f70cffc42fe0aef7fdf0bf3943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |