Loading…

High-mass eclipsing binaries: A testbed for models of interior structure and evolution: Accurate fundamental properties and surface chemical composition for V1034 Sco, GL Car, V573 Car, and V346 Cen

Aims. The surface chemical compositions of stars are affected by physical processes that bring the products of thermonuclear burning to the surface. Despite their potential in helping us understand the structure and evolution of stars, elemental abundances are available for only a few high-mass bina...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2023-03, Vol.671, p.A139
Main Authors: Pavlovski, K., Southworth, J., Tkachenko, A., Van Reeth, T., Tamajo, E.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c199t-b66b4c1a62cc0c5dba47d55531e9cea395d350ca21aeb1252b9e804a13ac4c713
container_end_page
container_issue
container_start_page A139
container_title Astronomy and astrophysics (Berlin)
container_volume 671
creator Pavlovski, K.
Southworth, J.
Tkachenko, A.
Van Reeth, T.
Tamajo, E.
description Aims. The surface chemical compositions of stars are affected by physical processes that bring the products of thermonuclear burning to the surface. Despite their potential in helping us understand the structure and evolution of stars, elemental abundances are available for only a few high-mass binary stars. We aim to enlarge this sample by determining the physical properties and photospheric abundances for four eclipsing binary systems that contain high-mass stars: V1034 Sco, GL Car, V573 Car, and V346 Cen. The components have masses of 8–17  M ⊙ , have effective temperatures from 22 500 to 32 200 K, and are all on the main sequence. Methods. We present new high-resolution and high signal-to-noise spectroscopy from the High Accuracy Radial velocity Planet Searcher (HARPS), which we analysed using spectral disentangling and non-local thermodynamic equilibrium spectral synthesis. We modelled existing light curves and new photometry from the Transiting Exoplanet Survey Satellite (TESS). Results. We measure the stellar masses to a 0.6–2.0% precision, radii to a 0.8–1.7% precision, effective temperatures to a 1.1–1.6% precision, and abundances of C, N, O, Mg, and Si. The abundances are similar to those found in our previous studies of high-mass eclipsing binaries; our sample now comprises 25 high-mass stars in 13 binary systems. We also find tidally excited pulsations in V346 Cen. Conclusions. These results reinforce our previous conclusions: interior chemical element transport is not as efficient in binary star components as in their single-star counterparts in the same mass regime and evolutionary stage, possibly due to the effects of tidal forces. Our ultimate goal is to provide a larger sample of OB-type stars in binaries to enable a thorough comparison to stellar evolutionary models, as well as to single high-mass stars.
doi_str_mv 10.1051/0004-6361/202244980
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1051_0004_6361_202244980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_0004_6361_202244980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-b66b4c1a62cc0c5dba47d55531e9cea395d350ca21aeb1252b9e804a13ac4c713</originalsourceid><addsrcrecordid>eNo9kNtKAzEYhIMoWKtP4E1eYG3-nHbXu1LUCgVv1Nslh39rZA8lyQq-vV0svRpmGAa-IeQe2AMwBSvGmCy00LDijHMp64pdkAVIwQtWSn1JFufGNblJ6ftoOVRiQT63Yf9V9CYliq4LhxSGPbVhMDFgeqRrmjFli562Y6T96LFLdGxpGDLGcIxSjpPLU0RqBk_xZ-ymHMbhlly1pkt4d9Il-Xh-et9si93by-tmvSsc1HUurNZWOjCaO8ec8tbI0iulBGDt0IhaeaGYMxwMWuCK2xorJg0I46QrQSyJ-N91cUwpYtscYuhN_G2ANfM1zQzezODN-RrxB9fFV7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-mass eclipsing binaries: A testbed for models of interior structure and evolution: Accurate fundamental properties and surface chemical composition for V1034 Sco, GL Car, V573 Car, and V346 Cen</title><source>EZB Electronic Journals Library</source><creator>Pavlovski, K. ; Southworth, J. ; Tkachenko, A. ; Van Reeth, T. ; Tamajo, E.</creator><creatorcontrib>Pavlovski, K. ; Southworth, J. ; Tkachenko, A. ; Van Reeth, T. ; Tamajo, E.</creatorcontrib><description>Aims. The surface chemical compositions of stars are affected by physical processes that bring the products of thermonuclear burning to the surface. Despite their potential in helping us understand the structure and evolution of stars, elemental abundances are available for only a few high-mass binary stars. We aim to enlarge this sample by determining the physical properties and photospheric abundances for four eclipsing binary systems that contain high-mass stars: V1034 Sco, GL Car, V573 Car, and V346 Cen. The components have masses of 8–17  M ⊙ , have effective temperatures from 22 500 to 32 200 K, and are all on the main sequence. Methods. We present new high-resolution and high signal-to-noise spectroscopy from the High Accuracy Radial velocity Planet Searcher (HARPS), which we analysed using spectral disentangling and non-local thermodynamic equilibrium spectral synthesis. We modelled existing light curves and new photometry from the Transiting Exoplanet Survey Satellite (TESS). Results. We measure the stellar masses to a 0.6–2.0% precision, radii to a 0.8–1.7% precision, effective temperatures to a 1.1–1.6% precision, and abundances of C, N, O, Mg, and Si. The abundances are similar to those found in our previous studies of high-mass eclipsing binaries; our sample now comprises 25 high-mass stars in 13 binary systems. We also find tidally excited pulsations in V346 Cen. Conclusions. These results reinforce our previous conclusions: interior chemical element transport is not as efficient in binary star components as in their single-star counterparts in the same mass regime and evolutionary stage, possibly due to the effects of tidal forces. Our ultimate goal is to provide a larger sample of OB-type stars in binaries to enable a thorough comparison to stellar evolutionary models, as well as to single high-mass stars.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202244980</identifier><language>eng</language><ispartof>Astronomy and astrophysics (Berlin), 2023-03, Vol.671, p.A139</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c199t-b66b4c1a62cc0c5dba47d55531e9cea395d350ca21aeb1252b9e804a13ac4c713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pavlovski, K.</creatorcontrib><creatorcontrib>Southworth, J.</creatorcontrib><creatorcontrib>Tkachenko, A.</creatorcontrib><creatorcontrib>Van Reeth, T.</creatorcontrib><creatorcontrib>Tamajo, E.</creatorcontrib><title>High-mass eclipsing binaries: A testbed for models of interior structure and evolution: Accurate fundamental properties and surface chemical composition for V1034 Sco, GL Car, V573 Car, and V346 Cen</title><title>Astronomy and astrophysics (Berlin)</title><description>Aims. The surface chemical compositions of stars are affected by physical processes that bring the products of thermonuclear burning to the surface. Despite their potential in helping us understand the structure and evolution of stars, elemental abundances are available for only a few high-mass binary stars. We aim to enlarge this sample by determining the physical properties and photospheric abundances for four eclipsing binary systems that contain high-mass stars: V1034 Sco, GL Car, V573 Car, and V346 Cen. The components have masses of 8–17  M ⊙ , have effective temperatures from 22 500 to 32 200 K, and are all on the main sequence. Methods. We present new high-resolution and high signal-to-noise spectroscopy from the High Accuracy Radial velocity Planet Searcher (HARPS), which we analysed using spectral disentangling and non-local thermodynamic equilibrium spectral synthesis. We modelled existing light curves and new photometry from the Transiting Exoplanet Survey Satellite (TESS). Results. We measure the stellar masses to a 0.6–2.0% precision, radii to a 0.8–1.7% precision, effective temperatures to a 1.1–1.6% precision, and abundances of C, N, O, Mg, and Si. The abundances are similar to those found in our previous studies of high-mass eclipsing binaries; our sample now comprises 25 high-mass stars in 13 binary systems. We also find tidally excited pulsations in V346 Cen. Conclusions. These results reinforce our previous conclusions: interior chemical element transport is not as efficient in binary star components as in their single-star counterparts in the same mass regime and evolutionary stage, possibly due to the effects of tidal forces. Our ultimate goal is to provide a larger sample of OB-type stars in binaries to enable a thorough comparison to stellar evolutionary models, as well as to single high-mass stars.</description><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKAzEYhIMoWKtP4E1eYG3-nHbXu1LUCgVv1Nslh39rZA8lyQq-vV0svRpmGAa-IeQe2AMwBSvGmCy00LDijHMp64pdkAVIwQtWSn1JFufGNblJ6ftoOVRiQT63Yf9V9CYliq4LhxSGPbVhMDFgeqRrmjFli562Y6T96LFLdGxpGDLGcIxSjpPLU0RqBk_xZ-ymHMbhlly1pkt4d9Il-Xh-et9si93by-tmvSsc1HUurNZWOjCaO8ec8tbI0iulBGDt0IhaeaGYMxwMWuCK2xorJg0I46QrQSyJ-N91cUwpYtscYuhN_G2ANfM1zQzezODN-RrxB9fFV7o</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Pavlovski, K.</creator><creator>Southworth, J.</creator><creator>Tkachenko, A.</creator><creator>Van Reeth, T.</creator><creator>Tamajo, E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>High-mass eclipsing binaries: A testbed for models of interior structure and evolution</title><author>Pavlovski, K. ; Southworth, J. ; Tkachenko, A. ; Van Reeth, T. ; Tamajo, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-b66b4c1a62cc0c5dba47d55531e9cea395d350ca21aeb1252b9e804a13ac4c713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlovski, K.</creatorcontrib><creatorcontrib>Southworth, J.</creatorcontrib><creatorcontrib>Tkachenko, A.</creatorcontrib><creatorcontrib>Van Reeth, T.</creatorcontrib><creatorcontrib>Tamajo, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlovski, K.</au><au>Southworth, J.</au><au>Tkachenko, A.</au><au>Van Reeth, T.</au><au>Tamajo, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-mass eclipsing binaries: A testbed for models of interior structure and evolution: Accurate fundamental properties and surface chemical composition for V1034 Sco, GL Car, V573 Car, and V346 Cen</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>671</volume><spage>A139</spage><pages>A139-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Aims. The surface chemical compositions of stars are affected by physical processes that bring the products of thermonuclear burning to the surface. Despite their potential in helping us understand the structure and evolution of stars, elemental abundances are available for only a few high-mass binary stars. We aim to enlarge this sample by determining the physical properties and photospheric abundances for four eclipsing binary systems that contain high-mass stars: V1034 Sco, GL Car, V573 Car, and V346 Cen. The components have masses of 8–17  M ⊙ , have effective temperatures from 22 500 to 32 200 K, and are all on the main sequence. Methods. We present new high-resolution and high signal-to-noise spectroscopy from the High Accuracy Radial velocity Planet Searcher (HARPS), which we analysed using spectral disentangling and non-local thermodynamic equilibrium spectral synthesis. We modelled existing light curves and new photometry from the Transiting Exoplanet Survey Satellite (TESS). Results. We measure the stellar masses to a 0.6–2.0% precision, radii to a 0.8–1.7% precision, effective temperatures to a 1.1–1.6% precision, and abundances of C, N, O, Mg, and Si. The abundances are similar to those found in our previous studies of high-mass eclipsing binaries; our sample now comprises 25 high-mass stars in 13 binary systems. We also find tidally excited pulsations in V346 Cen. Conclusions. These results reinforce our previous conclusions: interior chemical element transport is not as efficient in binary star components as in their single-star counterparts in the same mass regime and evolutionary stage, possibly due to the effects of tidal forces. Our ultimate goal is to provide a larger sample of OB-type stars in binaries to enable a thorough comparison to stellar evolutionary models, as well as to single high-mass stars.</abstract><doi>10.1051/0004-6361/202244980</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2023-03, Vol.671, p.A139
issn 0004-6361
1432-0746
language eng
recordid cdi_crossref_primary_10_1051_0004_6361_202244980
source EZB Electronic Journals Library
title High-mass eclipsing binaries: A testbed for models of interior structure and evolution: Accurate fundamental properties and surface chemical composition for V1034 Sco, GL Car, V573 Car, and V346 Cen
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-mass%20eclipsing%20binaries:%20A%20testbed%20for%20models%20of%20interior%20structure%20and%20evolution:%20Accurate%20fundamental%20properties%20and%20surface%20chemical%20composition%20for%20V1034%20Sco,%20GL%20Car,%20V573%20Car,%20and%20V346%20Cen&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Pavlovski,%20K.&rft.date=2023-03-01&rft.volume=671&rft.spage=A139&rft.pages=A139-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202244980&rft_dat=%3Ccrossref%3E10_1051_0004_6361_202244980%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c199t-b66b4c1a62cc0c5dba47d55531e9cea395d350ca21aeb1252b9e804a13ac4c713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true