Loading…

The ALMA-ALPAKA survey: II. Evolution of turbulence in galaxy disks across cosmic time: Difference between cold and warm gas

The gas in the interstellar medium (ISM) of galaxies is supersonically turbulent. Measurements of turbulence typically rely on cold gas emission lines for low- z galaxies and warm ionized gas observations for z  > 0 galaxies. Studies of warm gas kinematics at z  > 0 conclude that the turbulenc...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2024-09, Vol.689, p.A273
Main Authors: Rizzo, F., Bacchini, C., Kohandel, M., Di Mascolo, L., Fraternali, F., Roman-Oliveira, F., Zanella, A., Popping, G., Valentino, F., Magdis, G., Whitaker, K.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c163t-a0fe7f5291378eedfd5f5c7d4a3531b6eac94b7fa8e234d03c46b80dbf2a92933
container_end_page
container_issue
container_start_page A273
container_title Astronomy and astrophysics (Berlin)
container_volume 689
creator Rizzo, F.
Bacchini, C.
Kohandel, M.
Di Mascolo, L.
Fraternali, F.
Roman-Oliveira, F.
Zanella, A.
Popping, G.
Valentino, F.
Magdis, G.
Whitaker, K.
description The gas in the interstellar medium (ISM) of galaxies is supersonically turbulent. Measurements of turbulence typically rely on cold gas emission lines for low- z galaxies and warm ionized gas observations for z  > 0 galaxies. Studies of warm gas kinematics at z  > 0 conclude that the turbulence strongly evolves as a function of redshift, due to the increasing impact of gas accretion and mergers in the early Universe. However, recent findings suggest potential biases in turbulence measurements derived from ionized gas at high- z , impacting our understanding of turbulence origin, ISM physics and disk formation. We investigate the evolution of turbulence using velocity dispersion ( σ ) measurements from cold gas tracers (i.e., CO, [CI], [CII]). The initial dataset comprises 17 galaxy disks with high data quality from the ALPAKA sample, supplemented with galaxies from the literature, resulting in a sample of 57 galaxy disks spanning the redshift range z  = 0 − 5. This extended sample consists of main-sequence and starburst galaxies with stellar masses ≳10 10   M ⊙ . The comparison with current H α kinematic observations and existing models demonstrates that the velocity dispersion inferred from cold gas tracers differ by a factor of ≈3 from those obtained using emission lines tracing the warm, ionized gas. We show that stellar feedback is the main driver of turbulence measured from cold gas tracers and the physics of turbulence driving does not appear to evolve with time. This is fundamentally different from the conclusions of studies based on warm gas, which had to consider additional turbulence drivers to explain the high values of σ . We present a model predicting the redshift evolution of turbulence in galaxy disks, attributing the increase of σ with redshift to the higher energy injected by supernovae due to the elevated star-formation rate in high- z galaxies. This supernova-driven model suggests that turbulence is lower in galaxies with lower stellar mass compared to those with higher stellar mass. Additionally, it forecasts the evolution of σ in Milky-Way like progenitors.
doi_str_mv 10.1051/0004-6361/202450455
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1051_0004_6361_202450455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_0004_6361_202450455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-a0fe7f5291378eedfd5f5c7d4a3531b6eac94b7fa8e234d03c46b80dbf2a92933</originalsourceid><addsrcrecordid>eNo9j8tKBDEQRYMo2I5u3biZH4hTlcqjexkGX9iii3Ed0kkFFUVJVJi_10aZ1eXC5XKOEGcI5wgGVwCgpSWLKwVKG9DG7IkONSkJTtt90e0Wh-KotZffqrCnTpxunnjpxzsv_fjgb_2yfdVv3h6LgxJfG5_850I8Xl5s1tdyvL-6WftRJrT0KSMUdsWoAcn1zLlkU0xyWUcyhJPlmAY9uRJ7VqQzUNJ26iFPRcVBDUQLQX-_qb63VrmEj_r8Fus2IIRZLczgYQYPOzX6AQrSPoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The ALMA-ALPAKA survey: II. Evolution of turbulence in galaxy disks across cosmic time: Difference between cold and warm gas</title><source>EZB Free E-Journals</source><creator>Rizzo, F. ; Bacchini, C. ; Kohandel, M. ; Di Mascolo, L. ; Fraternali, F. ; Roman-Oliveira, F. ; Zanella, A. ; Popping, G. ; Valentino, F. ; Magdis, G. ; Whitaker, K.</creator><creatorcontrib>Rizzo, F. ; Bacchini, C. ; Kohandel, M. ; Di Mascolo, L. ; Fraternali, F. ; Roman-Oliveira, F. ; Zanella, A. ; Popping, G. ; Valentino, F. ; Magdis, G. ; Whitaker, K.</creatorcontrib><description>The gas in the interstellar medium (ISM) of galaxies is supersonically turbulent. Measurements of turbulence typically rely on cold gas emission lines for low- z galaxies and warm ionized gas observations for z  &gt; 0 galaxies. Studies of warm gas kinematics at z  &gt; 0 conclude that the turbulence strongly evolves as a function of redshift, due to the increasing impact of gas accretion and mergers in the early Universe. However, recent findings suggest potential biases in turbulence measurements derived from ionized gas at high- z , impacting our understanding of turbulence origin, ISM physics and disk formation. We investigate the evolution of turbulence using velocity dispersion ( σ ) measurements from cold gas tracers (i.e., CO, [CI], [CII]). The initial dataset comprises 17 galaxy disks with high data quality from the ALPAKA sample, supplemented with galaxies from the literature, resulting in a sample of 57 galaxy disks spanning the redshift range z  = 0 − 5. This extended sample consists of main-sequence and starburst galaxies with stellar masses ≳10 10   M ⊙ . The comparison with current H α kinematic observations and existing models demonstrates that the velocity dispersion inferred from cold gas tracers differ by a factor of ≈3 from those obtained using emission lines tracing the warm, ionized gas. We show that stellar feedback is the main driver of turbulence measured from cold gas tracers and the physics of turbulence driving does not appear to evolve with time. This is fundamentally different from the conclusions of studies based on warm gas, which had to consider additional turbulence drivers to explain the high values of σ . We present a model predicting the redshift evolution of turbulence in galaxy disks, attributing the increase of σ with redshift to the higher energy injected by supernovae due to the elevated star-formation rate in high- z galaxies. This supernova-driven model suggests that turbulence is lower in galaxies with lower stellar mass compared to those with higher stellar mass. Additionally, it forecasts the evolution of σ in Milky-Way like progenitors.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202450455</identifier><language>eng</language><ispartof>Astronomy and astrophysics (Berlin), 2024-09, Vol.689, p.A273</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c163t-a0fe7f5291378eedfd5f5c7d4a3531b6eac94b7fa8e234d03c46b80dbf2a92933</cites><orcidid>0000-0001-6477-4011 ; 0000-0001-7160-3632 ; 0000-0002-8372-3428 ; 0000-0001-7959-7054 ; 0000-0002-4872-2294 ; 0000-0001-8600-7008 ; 0000-0003-1151-4659 ; 0000-0003-1041-7865 ; 0000-0001-9705-2461 ; 0000-0003-3586-4485 ; 0000-0002-0447-3230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rizzo, F.</creatorcontrib><creatorcontrib>Bacchini, C.</creatorcontrib><creatorcontrib>Kohandel, M.</creatorcontrib><creatorcontrib>Di Mascolo, L.</creatorcontrib><creatorcontrib>Fraternali, F.</creatorcontrib><creatorcontrib>Roman-Oliveira, F.</creatorcontrib><creatorcontrib>Zanella, A.</creatorcontrib><creatorcontrib>Popping, G.</creatorcontrib><creatorcontrib>Valentino, F.</creatorcontrib><creatorcontrib>Magdis, G.</creatorcontrib><creatorcontrib>Whitaker, K.</creatorcontrib><title>The ALMA-ALPAKA survey: II. Evolution of turbulence in galaxy disks across cosmic time: Difference between cold and warm gas</title><title>Astronomy and astrophysics (Berlin)</title><description>The gas in the interstellar medium (ISM) of galaxies is supersonically turbulent. Measurements of turbulence typically rely on cold gas emission lines for low- z galaxies and warm ionized gas observations for z  &gt; 0 galaxies. Studies of warm gas kinematics at z  &gt; 0 conclude that the turbulence strongly evolves as a function of redshift, due to the increasing impact of gas accretion and mergers in the early Universe. However, recent findings suggest potential biases in turbulence measurements derived from ionized gas at high- z , impacting our understanding of turbulence origin, ISM physics and disk formation. We investigate the evolution of turbulence using velocity dispersion ( σ ) measurements from cold gas tracers (i.e., CO, [CI], [CII]). The initial dataset comprises 17 galaxy disks with high data quality from the ALPAKA sample, supplemented with galaxies from the literature, resulting in a sample of 57 galaxy disks spanning the redshift range z  = 0 − 5. This extended sample consists of main-sequence and starburst galaxies with stellar masses ≳10 10   M ⊙ . The comparison with current H α kinematic observations and existing models demonstrates that the velocity dispersion inferred from cold gas tracers differ by a factor of ≈3 from those obtained using emission lines tracing the warm, ionized gas. We show that stellar feedback is the main driver of turbulence measured from cold gas tracers and the physics of turbulence driving does not appear to evolve with time. This is fundamentally different from the conclusions of studies based on warm gas, which had to consider additional turbulence drivers to explain the high values of σ . We present a model predicting the redshift evolution of turbulence in galaxy disks, attributing the increase of σ with redshift to the higher energy injected by supernovae due to the elevated star-formation rate in high- z galaxies. This supernova-driven model suggests that turbulence is lower in galaxies with lower stellar mass compared to those with higher stellar mass. Additionally, it forecasts the evolution of σ in Milky-Way like progenitors.</description><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j8tKBDEQRYMo2I5u3biZH4hTlcqjexkGX9iii3Ed0kkFFUVJVJi_10aZ1eXC5XKOEGcI5wgGVwCgpSWLKwVKG9DG7IkONSkJTtt90e0Wh-KotZffqrCnTpxunnjpxzsv_fjgb_2yfdVv3h6LgxJfG5_850I8Xl5s1tdyvL-6WftRJrT0KSMUdsWoAcn1zLlkU0xyWUcyhJPlmAY9uRJ7VqQzUNJ26iFPRcVBDUQLQX-_qb63VrmEj_r8Fus2IIRZLczgYQYPOzX6AQrSPoU</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Rizzo, F.</creator><creator>Bacchini, C.</creator><creator>Kohandel, M.</creator><creator>Di Mascolo, L.</creator><creator>Fraternali, F.</creator><creator>Roman-Oliveira, F.</creator><creator>Zanella, A.</creator><creator>Popping, G.</creator><creator>Valentino, F.</creator><creator>Magdis, G.</creator><creator>Whitaker, K.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6477-4011</orcidid><orcidid>https://orcid.org/0000-0001-7160-3632</orcidid><orcidid>https://orcid.org/0000-0002-8372-3428</orcidid><orcidid>https://orcid.org/0000-0001-7959-7054</orcidid><orcidid>https://orcid.org/0000-0002-4872-2294</orcidid><orcidid>https://orcid.org/0000-0001-8600-7008</orcidid><orcidid>https://orcid.org/0000-0003-1151-4659</orcidid><orcidid>https://orcid.org/0000-0003-1041-7865</orcidid><orcidid>https://orcid.org/0000-0001-9705-2461</orcidid><orcidid>https://orcid.org/0000-0003-3586-4485</orcidid><orcidid>https://orcid.org/0000-0002-0447-3230</orcidid></search><sort><creationdate>20240920</creationdate><title>The ALMA-ALPAKA survey</title><author>Rizzo, F. ; Bacchini, C. ; Kohandel, M. ; Di Mascolo, L. ; Fraternali, F. ; Roman-Oliveira, F. ; Zanella, A. ; Popping, G. ; Valentino, F. ; Magdis, G. ; Whitaker, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-a0fe7f5291378eedfd5f5c7d4a3531b6eac94b7fa8e234d03c46b80dbf2a92933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizzo, F.</creatorcontrib><creatorcontrib>Bacchini, C.</creatorcontrib><creatorcontrib>Kohandel, M.</creatorcontrib><creatorcontrib>Di Mascolo, L.</creatorcontrib><creatorcontrib>Fraternali, F.</creatorcontrib><creatorcontrib>Roman-Oliveira, F.</creatorcontrib><creatorcontrib>Zanella, A.</creatorcontrib><creatorcontrib>Popping, G.</creatorcontrib><creatorcontrib>Valentino, F.</creatorcontrib><creatorcontrib>Magdis, G.</creatorcontrib><creatorcontrib>Whitaker, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizzo, F.</au><au>Bacchini, C.</au><au>Kohandel, M.</au><au>Di Mascolo, L.</au><au>Fraternali, F.</au><au>Roman-Oliveira, F.</au><au>Zanella, A.</au><au>Popping, G.</au><au>Valentino, F.</au><au>Magdis, G.</au><au>Whitaker, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ALMA-ALPAKA survey: II. Evolution of turbulence in galaxy disks across cosmic time: Difference between cold and warm gas</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-09-20</date><risdate>2024</risdate><volume>689</volume><spage>A273</spage><pages>A273-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>The gas in the interstellar medium (ISM) of galaxies is supersonically turbulent. Measurements of turbulence typically rely on cold gas emission lines for low- z galaxies and warm ionized gas observations for z  &gt; 0 galaxies. Studies of warm gas kinematics at z  &gt; 0 conclude that the turbulence strongly evolves as a function of redshift, due to the increasing impact of gas accretion and mergers in the early Universe. However, recent findings suggest potential biases in turbulence measurements derived from ionized gas at high- z , impacting our understanding of turbulence origin, ISM physics and disk formation. We investigate the evolution of turbulence using velocity dispersion ( σ ) measurements from cold gas tracers (i.e., CO, [CI], [CII]). The initial dataset comprises 17 galaxy disks with high data quality from the ALPAKA sample, supplemented with galaxies from the literature, resulting in a sample of 57 galaxy disks spanning the redshift range z  = 0 − 5. This extended sample consists of main-sequence and starburst galaxies with stellar masses ≳10 10   M ⊙ . The comparison with current H α kinematic observations and existing models demonstrates that the velocity dispersion inferred from cold gas tracers differ by a factor of ≈3 from those obtained using emission lines tracing the warm, ionized gas. We show that stellar feedback is the main driver of turbulence measured from cold gas tracers and the physics of turbulence driving does not appear to evolve with time. This is fundamentally different from the conclusions of studies based on warm gas, which had to consider additional turbulence drivers to explain the high values of σ . We present a model predicting the redshift evolution of turbulence in galaxy disks, attributing the increase of σ with redshift to the higher energy injected by supernovae due to the elevated star-formation rate in high- z galaxies. This supernova-driven model suggests that turbulence is lower in galaxies with lower stellar mass compared to those with higher stellar mass. Additionally, it forecasts the evolution of σ in Milky-Way like progenitors.</abstract><doi>10.1051/0004-6361/202450455</doi><orcidid>https://orcid.org/0000-0001-6477-4011</orcidid><orcidid>https://orcid.org/0000-0001-7160-3632</orcidid><orcidid>https://orcid.org/0000-0002-8372-3428</orcidid><orcidid>https://orcid.org/0000-0001-7959-7054</orcidid><orcidid>https://orcid.org/0000-0002-4872-2294</orcidid><orcidid>https://orcid.org/0000-0001-8600-7008</orcidid><orcidid>https://orcid.org/0000-0003-1151-4659</orcidid><orcidid>https://orcid.org/0000-0003-1041-7865</orcidid><orcidid>https://orcid.org/0000-0001-9705-2461</orcidid><orcidid>https://orcid.org/0000-0003-3586-4485</orcidid><orcidid>https://orcid.org/0000-0002-0447-3230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2024-09, Vol.689, p.A273
issn 0004-6361
1432-0746
language eng
recordid cdi_crossref_primary_10_1051_0004_6361_202450455
source EZB Free E-Journals
title The ALMA-ALPAKA survey: II. Evolution of turbulence in galaxy disks across cosmic time: Difference between cold and warm gas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ALMA-ALPAKA%20survey:%20II.%20Evolution%20of%20turbulence%20in%20galaxy%20disks%20across%20cosmic%20time:%20Difference%20between%20cold%20and%20warm%20gas&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Rizzo,%20F.&rft.date=2024-09-20&rft.volume=689&rft.spage=A273&rft.pages=A273-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202450455&rft_dat=%3Ccrossref%3E10_1051_0004_6361_202450455%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c163t-a0fe7f5291378eedfd5f5c7d4a3531b6eac94b7fa8e234d03c46b80dbf2a92933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true